赞
踩
相机标定的目的:获取摄像机的内参和外参矩阵(同时也会得到每一幅标定图像的选择和平移矩阵),内参和外参系数可以对之后相机拍摄的图像就进行矫正,得到畸变相对很小的图像。
相机标定的输入:标定图像上所有内角点的图像坐标,标定板图像上所有内角点的空间三维坐标(一般情况下假定图像位于Z=0平面上)。
相机标定的输出:摄像机的内参、外参系数。
标定流程
1. 准备标定图片
2. 对每一张标定图片,提取角点信息
3. 对每一张标定图片,进一步提取亚像素角点信息
4. 在棋盘标定图上绘制找到的内角点(非必须,仅为了显示)
5. 相机标定
6. 对标定结果进行评价
7. 查看标定效果——利用标定结果对棋盘图进行矫正
1. 准备标定图片
标定图片需要使用标定板在不同位置、不同角度、不同姿态下拍摄,最少需要3张,以10~20张为宜。标定板需要是黑白相间的矩形构成的棋盘图,制作精度要求较高,如下图所示:
需要使用findChessboardCorners函数提取角点,这里的角点专指的是标定板上的内角点,这些角点与标定板的边缘不接触。
findChessboardCorners函数原型:
//! finds checkerboard pattern of the specified size in the image CV_EXPORTS_W bool findChessboardCorners( InputArray image, Size patternSize, OutputArray corners, int flags=CALIB_CB_ADAPTIVE_THRESH+CALIB_CB_NORMALIZE_IMAGE );
第一个参数Image,传入拍摄的棋盘图Mat图像,必须是8位的灰度或者彩色图像;
第二个参数patternSize,每个棋盘图上内角点的行列数,一般情况下,行列数不要相同,便于后续标定程序识别标定板的方向;
第三个参数corners,用于存储检测到的内角点图像坐标位置,一般用元素是Point2f的向量来表示:vector<Point2f> image_points_buf;
第四个参数flage:用于定义棋盘图上内角点查找的不同处理方式,有默认值。
3. 对每一张标定图片,进一步提取亚像素角点信息
为了提高标定精度,需要在初步提取的角点信息上进一步提取亚像素信息,降低相机标定偏差,常用的方法是cornerSubPix,另一个方法是使用find4QuadCornerSubpix函数,这个方法是专门用来获取棋盘图上内角点的精确位置的,或许在相机标定的这个特殊场合下它的检测精度会比cornerSubPix更高?
cornerSubPix函数原型:
//! adjusts the corner locations with sub-pixel accuracy to maximize the certain cornerness criteria CV_EXPORTS_W void cornerSubPix( InputArray image, InputOutputArray corners, Size winSize, Size zeroZone, TermCriteria criteria );
第一个参数image,输入的Mat矩阵,最好是8位灰度图像,检测效率更高;
第二个参数corners,初始的角点坐标向量,同时作为亚像素坐标位置的输出,所以需要是浮点型数据,一般用元素是Pointf2f/Point2d的向量来表示:vector<Point2f/Point2d> iamgePointsBuf;
第三个参数winSize,大小为搜索窗口的一半;
第四个参数zeroZone,死区的一半尺寸,死区为不对搜索区的中央位置做求和运算的区域。它是用来避免自相关矩阵出现某些可能的奇异性。当值为(-1,-1)时表示没有死区;
第五个参数criteria,定义求角点的迭代过程的终止条件,可以为迭代次数和角点精度两者的组合;
find4QuadCornerSubpix函数原型:
//! finds subpixel-accurate positions of the chessboard corners CV_EXPORTS bool find4QuadCornerSubpix(InputArray img, InputOutputArray corners, Size region_size);
第一个参数img,输入的Mat矩阵,最好是8位灰度图像,检测效率更高;
第二个参数corners,初始的角点坐标向量,同时作为亚像素坐标位置的输出,所以需要是浮点型数据,一般用元素是Pointf2f/Point2d的向量来表示:vector<Point2f/Point2d> iamgePointsBuf;
第三个参数region_size,角点搜索窗口的尺寸;
在其中一个标定的棋盘图上分别运行cornerSubPix和find4QuadCornerSubpix寻找亚像素角点,两者定位到的亚像素角点坐标分别为:
drawChessboardCorners函数用于绘制被成功标定的角点,函数原型:
//! draws the checkerboard pattern (found or partly found) in the image CV_EXPORTS_W void drawChessboardCorners( InputOutputArray image, Size patternSize, InputArray corners, bool patternWasFound );
第一个参数image,8位灰度或者彩色图像;
第二个参数patternSize,每张标定棋盘上内角点的行列数;
第三个参数corners,初始的角点坐标向量,同时作为亚像素坐标位置的输出,所以需要是浮点型数据,一般用元素是Pointf2f/Point2d的向量来表示:vector<Point2f/Point2d> iamgePointsBuf;
第四个参数patternWasFound,标志位,用来指示定义的棋盘内角点是否被完整的探测到,true表示别完整的探测到,函数会用直线依次连接所有的内角点,作为一个整体,false表示有未被探测到的内角点,这时候函数会以(红色)圆圈标记处检测到的内角点;
获取到棋盘标定图的内角点图像坐标之后,就可以使用calibrateCamera函数进行标定,计算相机内参和外参系数,
calibrateCamera函数原型:
//! finds intrinsic and extrinsic camera parameters from several fews of a known calibration pattern. CV_EXPORTS_W double calibrateCamera( InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, Size imageSize, CV_OUT InputOutputArray cameraMatrix, CV_OUT InputOutputArray distCoeffs, OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, int flags=0, TermCriteria criteria = TermCriteria( TermCriteria::COUNT+TermCriteria::EPS, 30, DBL_EPSILON) );
第一个参数objectPoints,为世界坐标系中的三维点。在使用时,应该输入一个三维坐标点的向量的向量,即vector<vector<Point3f>> object_points。需要依据棋盘上单个黑白矩阵的大小,计算出(初始化)每一个内角点的世界坐标。
第二个参数imagePoints,为每一个内角点对应的图像坐标点。和objectPoints一样,应该输入vector<vector<Point2f>> image_points_seq形式的变量;
第三个参数imageSize,为图像的像素尺寸大小,在计算相机的内参和畸变矩阵时需要使用到该参数;
第四个参数cameraMatrix为相机的内参矩阵。输入一个Mat cameraMatrix即可,如Mat cameraMatrix=Mat(3,3,CV_32FC1,Scalar::all(0));
第五个参数distCoeffs为畸变矩阵。输入一个Mat distCoeffs=Mat(1,5,CV_32FC1,Scalar::all(0))即可;
第六个参数rvecs为旋转向量;应该输入一个Mat类型的vector,即vector<Mat>rvecs;
第七个参数tvecs为位移向量,和rvecs一样,应该为vector<Mat> tvecs;
第八个参数flags为标定时所采用的算法。有如下几个参数:
CV_CALIB_USE_INTRINSIC_GUESS:使用该参数时,在cameraMatrix矩阵中应该有fx,fy,u0,v0的估计值。否则的话,将初始化(u0,v0)图像的中心点,使用最小二乘估算出fx,fy。
CV_CALIB_FIX_PRINCIPAL_POINT:在进行优化时会固定光轴点。当CV_CALIB_USE_INTRINSIC_GUESS参数被设置,光轴点将保持在中心或者某个输入的值。
CV_CALIB_FIX_ASPECT_RATIO:固定fx/fy的比值,只将fy作为可变量,进行优化计算。当CV_CALIB_USE_INTRINSIC_GUESS没有被设置,fx和fy将会被忽略。只有fx/fy的比值在计算中会被用到。
CV_CALIB_ZERO_TANGENT_DIST:设定切向畸变参数(p1,p2)为零。
CV_CALIB_FIX_K1,…,CV_CALIB_FIX_K6:对应的径向畸变在优化中保持不变。
CV_CALIB_RATIONAL_MODEL:计算k4,k5,k6三个畸变参数。如果没有设置,则只计算其它5个畸变参数。
第九个参数criteria是最优迭代终止条件设定。
在使用该函数进行标定运算之前,需要对棋盘上每一个内角点的空间坐标系的位置坐标进行初始化,标定的结果是生成相机的内参矩阵cameraMatrix、相机的5个畸变系数distCoeffs,另外每张图像都会生成属于自己的平移向量和旋转向量。
6. 对标定结果进行评价
对标定结果进行评价的方法是通过得到的摄像机内外参数,对空间的三维点进行重新投影计算,得到空间三维点在图像上新的投影点的坐标,计算投影坐标和亚像素角点坐标之间的偏差,偏差越小,标定结果越好。
对空间三维坐标点进行反向投影的函数是projectPoints,函数原型是:
//! projects points from the model coordinate space to the image coordinates. Also computes derivatives of the image coordinates w.r.t the intrinsic and extrinsic camera parameters CV_EXPORTS_W void projectPoints( InputArray objectPoints, InputArray rvec, InputArray tvec, InputArray cameraMatrix, InputArray distCoeffs, OutputArray imagePoints, OutputArray jacobian=noArray(), double aspectRatio=0 );
第一个参数objectPoints,为相机坐标系中的三维点坐标;
第二个参数rvec为旋转向量,每一张图像都有自己的选择向量;
第三个参数tvec为位移向量,每一张图像都有自己的平移向量;
第四个参数cameraMatrix为求得的相机的内参数矩阵;
第五个参数distCoeffs为相机的畸变矩阵;
第六个参数iamgePoints为每一个内角点对应的图像上的坐标点;
第七个参数jacobian是雅可比行列式;
第八个参数aspectRatio是跟相机传感器的感光单元有关的可选参数,如果设置为非0,则函数默认感光单元的dx/dy是固定的,会依此对雅可比矩阵进行调整;
7. 查看标定效果——利用标定结果对棋盘图进行矫正
利用求得的相机的内参和外参数据,可以对图像进行畸变的矫正,这里有两种方法可以达到矫正的目的,分别说明一下。
方法一:使用initUndistortRectifyMap和remap两个函数配合实现。
initUndistortRectifyMap用来计算畸变映射,remap把求得的映射应用到图像上。
initUndistortRectifyMap的函数原型:
//! initializes maps for cv::remap() to correct lens distortion and optionally rectify the image CV_EXPORTS_W void initUndistortRectifyMap( InputArray cameraMatrix, InputArray distCoeffs, InputArray R, InputArray newCameraMatrix, Size size, int m1type, OutputArray map1, OutputArray map2 );
第一个参数cameraMatrix为之前求得的相机的内参矩阵;
第二个参数distCoeffs为之前求得的相机畸变矩阵;
第三个参数R,可选的输入,是第一和第二相机坐标之间的旋转矩阵;
第四个参数newCameraMatrix,输入的校正后的3X3摄像机矩阵;
第五个参数size,摄像机采集的无失真的图像尺寸;
第六个参数m1type,定义map1的数据类型,可以是CV_32FC1或者CV_16SC2;
第七个参数map1和第八个参数map2,输出的X/Y坐标重映射参数;
remap函数原型:
//! warps the image using the precomputed maps. The maps are stored in either floating-point or integer fixed-point format CV_EXPORTS_W void remap( InputArray src, OutputArray dst, InputArray map1, InputArray map2, int interpolation, int borderMode=BORDER_CONSTANT, const Scalar& borderValue=Scalar());
第一个参数src,输入参数,代表畸变的原始图像;
第二个参数dst,矫正后的输出图像,跟输入图像具有相同的类型和大小;
第三个参数map1和第四个参数map2,X坐标和Y坐标的映射;
第五个参数interpolation,定义图像的插值方式;
第六个参数borderMode,定义边界填充方式;
方法二:使用undistort函数实现
undistort函数原型:
//! corrects lens distortion for the given camera matrix and distortion coefficients CV_EXPORTS_W void undistort( InputArray src, OutputArray dst, InputArray cameraMatrix, InputArray distCoeffs, InputArray newCameraMatrix=noArray() );
第一个参数src,输入参数,代表畸变的原始图像;
第二个参数dst,矫正后的输出图像,跟输入图像具有相同的类型和大小;
第三个参数cameraMatrix为之前求得的相机的内参矩阵;
第四个参数distCoeffs为之前求得的相机畸变矩阵;
第五个参数newCameraMatrix,默认跟cameraMatrix保持一致;
方法一相比方法二执行效率更高一些,推荐使用。
完整代码
#include "opencv2/core/core.hpp" #include "opencv2/imgproc/imgproc.hpp" #include "opencv2/calib3d/calib3d.hpp" #include "opencv2/highgui/highgui.hpp" #include <iostream> #include <fstream> using namespace cv; using namespace std; void main() { ifstream fin("calibdata.txt"); /* 标定所用图像文件的路径 */ ofstream fout("caliberation_result.txt"); /* 保存标定结果的文件 */ //读取每一幅图像,从中提取出角点,然后对角点进行亚像素精确化 cout<<"开始提取角点………………"; int image_count=0; /* 图像数量 */ Size image_size; /* 图像的尺寸 */ Size board_size = Size(4,6); /* 标定板上每行、列的角点数 */ vector<Point2f> image_points_buf; /* 缓存每幅图像上检测到的角点 */ vector<vector<Point2f>> image_points_seq; /* 保存检测到的所有角点 */ string filename; int count= -1 ;//用于存储角点个数。 while (getline(fin,filename)) { image_count++; // 用于观察检验输出 cout<<"image_count = "<<image_count<<endl; /* 输出检验*/ cout<<"-->count = "<<count; Mat imageInput=imread(filename); if (image_count == 1) //读入第一张图片时获取图像宽高信息 { image_size.width = imageInput.cols; image_size.height =imageInput.rows; cout<<"image_size.width = "<<image_size.width<<endl; cout<<"image_size.height = "<<image_size.height<<endl; } /* 提取角点 */ if (0 == findChessboardCorners(imageInput,board_size,image_points_buf)) { cout<<"can not find chessboard corners!\n"; //找不到角点 exit(1); } else { Mat view_gray; cvtColor(imageInput,view_gray,CV_RGB2GRAY); /* 亚像素精确化 */ find4QuadCornerSubpix(view_gray,image_points_buf,Size(11,11)); //对粗提取的角点进行精确化 image_points_seq.push_back(image_points_buf); //保存亚像素角点 /* 在图像上显示角点位置 */ drawChessboardCorners(view_gray,board_size,image_points_buf,true); //用于在图片中标记角点 imshow("Camera Calibration",view_gray);//显示图片 waitKey(500);//暂停0.5S } } int total = image_points_seq.size(); cout<<"total = "<<total<<endl; int CornerNum=board_size.width*board_size.height; //每张图片上总的角点数 for (int ii=0 ; ii<total ;ii++) { if (0 == ii%CornerNum)// 24 是每幅图片的角点个数。此判断语句是为了输出 图片号,便于控制台观看 { int i = -1; i = ii/CornerNum; int j=i+1; cout<<"--> 第 "<<j <<"图片的数据 --> : "<<endl; } if (0 == ii%3) // 此判断语句,格式化输出,便于控制台查看 { cout<<endl; } else { cout.width(10); } //输出所有的角点 cout<<" -->"<<image_points_seq[ii][0].x; cout<<" -->"<<image_points_seq[ii][0].y; } cout<<"角点提取完成!\n"; //以下是摄像机标定 cout<<"开始标定………………"; /*棋盘三维信息*/ Size square_size = Size(10,10); /* 实际测量得到的标定板上每个棋盘格的大小 */ vector<vector<Point3f>> object_points; /* 保存标定板上角点的三维坐标 */ /*内外参数*/ Mat cameraMatrix=Mat(3,3,CV_32FC1,Scalar::all(0)); /* 摄像机内参数矩阵 */ vector<int> point_counts; // 每幅图像中角点的数量 Mat distCoeffs=Mat(1,5,CV_32FC1,Scalar::all(0)); /* 摄像机的5个畸变系数:k1,k2,p1,p2,k3 */ vector<Mat> tvecsMat; /* 每幅图像的旋转向量 */ vector<Mat> rvecsMat; /* 每幅图像的平移向量 */ /* 初始化标定板上角点的三维坐标 */ int i,j,t; for (t=0;t<image_count;t++) { vector<Point3f> tempPointSet; for (i=0;i<board_size.height;i++) { for (j=0;j<board_size.width;j++) { Point3f realPoint; /* 假设标定板放在世界坐标系中z=0的平面上 */ realPoint.x = i*square_size.width; realPoint.y = j*square_size.height; realPoint.z = 0; tempPointSet.push_back(realPoint); } } object_points.push_back(tempPointSet); } /* 初始化每幅图像中的角点数量,假定每幅图像中都可以看到完整的标定板 */ for (i=0;i<image_count;i++) { point_counts.push_back(board_size.width*board_size.height); } /* 开始标定 */ calibrateCamera(object_points,image_points_seq,image_size,cameraMatrix,distCoeffs,rvecsMat,tvecsMat,0); cout<<"标定完成!\n"; //对标定结果进行评价 cout<<"开始评价标定结果………………\n"; double total_err = 0.0; /* 所有图像的平均误差的总和 */ double err = 0.0; /* 每幅图像的平均误差 */ vector<Point2f> image_points2; /* 保存重新计算得到的投影点 */ cout<<"\t每幅图像的标定误差:\n"; fout<<"每幅图像的标定误差:\n"; for (i=0;i<image_count;i++) { vector<Point3f> tempPointSet=object_points[i]; /* 通过得到的摄像机内外参数,对空间的三维点进行重新投影计算,得到新的投影点 */ projectPoints(tempPointSet,rvecsMat[i],tvecsMat[i],cameraMatrix,distCoeffs,image_points2); /* 计算新的投影点和旧的投影点之间的误差*/ vector<Point2f> tempImagePoint = image_points_seq[i]; Mat tempImagePointMat = Mat(1,tempImagePoint.size(),CV_32FC2); Mat image_points2Mat = Mat(1,image_points2.size(), CV_32FC2); for (int j = 0 ; j < tempImagePoint.size(); j++) { image_points2Mat.at<Vec2f>(0,j) = Vec2f(image_points2[j].x, image_points2[j].y); tempImagePointMat.at<Vec2f>(0,j) = Vec2f(tempImagePoint[j].x, tempImagePoint[j].y); } err = norm(image_points2Mat, tempImagePointMat, NORM_L2); total_err += err/= point_counts[i]; std::cout<<"第"<<i+1<<"幅图像的平均误差:"<<err<<"像素"<<endl; fout<<"第"<<i+1<<"幅图像的平均误差:"<<err<<"像素"<<endl; } std::cout<<"总体平均误差:"<<total_err/image_count<<"像素"<<endl; fout<<"总体平均误差:"<<total_err/image_count<<"像素"<<endl<<endl; std::cout<<"评价完成!"<<endl; //保存定标结果 std::cout<<"开始保存定标结果………………"<<endl; Mat rotation_matrix = Mat(3,3,CV_32FC1, Scalar::all(0)); /* 保存每幅图像的旋转矩阵 */ fout<<"相机内参数矩阵:"<<endl; fout<<cameraMatrix<<endl<<endl; fout<<"畸变系数:\n"; fout<<distCoeffs<<endl<<endl<<endl; for (int i=0; i<image_count; i++) { fout<<"第"<<i+1<<"幅图像的旋转向量:"<<endl; fout<<tvecsMat[i]<<endl; /* 将旋转向量转换为相对应的旋转矩阵 */ Rodrigues(tvecsMat[i],rotation_matrix); fout<<"第"<<i+1<<"幅图像的旋转矩阵:"<<endl; fout<<rotation_matrix<<endl; fout<<"第"<<i+1<<"幅图像的平移向量:"<<endl; fout<<rvecsMat[i]<<endl<<endl; } std::cout<<"完成保存"<<endl; fout<<endl; system("pause"); return ; }
操作说明:
运行前需要先准备标定图片和记录标定图片列表的文本文件,并放入程序所在目录下,如下图所示:
文本文件内容如下
其他标定工具:
OpenCV: https://docs.opencv.org/master/d4/d94/tutorial_camera_calibration.html
Matlab: https://www.mathworks.com/help/vision/ug/single-cameracalibrator-app.html
ROS: http://wiki.ros.org/camera_calibration
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。