赞
踩
目标:基于BERT网络实现对文本的情感进行分析,将网络上的商品评论内容经过预处理后输入BERT模型训练和推理,最后将判断结果进行输出。
BERT介绍
谷歌AI团队发布的BERT模型在11种不同的自然语言处理任务中创出佳成绩,为自然语言处理带来里程碑式的改变,也是自然语言处理领域近期重要的进展。
BERT是一种对语言表征进行预训练的方法, 即是经过大型文本语料库(如维基百科)训练后获得的通用“语言理解”模型,该模型可用于自然语言处理下游任务(如自动问答)。BERT之所以表现得比过往的方法要好, 是因为它是首个用于自然语言处理预训练的无监督、深度双向系统。BERT的优势是能够轻松适用多种类型的自然语言处理任务。
Bert最关键有两点,第一点是特征抽取器采用Transformer,第二点是预训练的时候采用双向语言模型。
参考博客:Bert文本分类实战(附代码讲解)_Dr.sky_的博客-CSDN博客_bert实战
2.熟悉文本分类的常规方法
文本分类流程:1.输入文本预处理,2.文本表示及特征提取,3.构造分类器模型,4.文本分类。
文本分类技术参考博客:一文读懂文本分类技术路线_Yunlord的博客-CSDN博客_文本分类技术
- #准备数据,从OSS中获取数据并解压到当前目录:
-
- import os
- import oss2
- access_key_id = os.getenv('OSS_TEST_ACCESS_KEY_ID', 'LTAI4G1MuHTUeNrKdQEPnbph')
- access_key_secret = os.getenv('OSS_TEST_ACCESS_KEY_SECRET', 'm1ILSoVqcPUxFFDqer4tKDxDkoP1ji')
- bucket_name = os.getenv('OSS_TEST_BUCKET', 'mldemo')
- endpoint = os.getenv('OSS_TEST_ENDPOINT', 'https://oss-cn-shanghai.aliyuncs.com')
- # 创建Bucket对象,所有Object相关的接口都可以通过Bucket对象来进行
- bucket = oss2.Bucket(oss2.Auth(access_key_id, access_key_secret), endpoint, bucket_name)
- # 下载到本地文件
- bucket.get_object_to_file('data/c12/bert_data.zip', 'bert_data.zip')
- #解压数据
- !unzip -o -q bert_data.zip
- !rm -rf __MACOSX
!ls bert_input_data -ilht
- import collections
- import csv
- import errno
- import tensorflow as tf
- import logging
- import logging as log
- import sys, os
- import traceback
- from sklearn.utils import shuffle
- import pandas as pd
- import numpy as np
- import modeling
- import optimization
- import tokenization
- %matplotlib inline
3.读取数据
- #读取数据
- df = pd.read_csv("./bert_input_data/train_data.tsv", header=0,sep='\t').sample(n=100,random_state=1)
- df.columns=['baseid','xtext','category']
- df.head(5)
df.info()
- # number of different class
- print('\nnumber of different class: ', len(list(set(df.category))))
- print(list(set(df.category)))
查看不同类别数据对比情况:
df.category.value_counts().plot(kind='bar')
构建训练数据集,首先随机化数据:
- from sklearn.utils import shuffle
- df = shuffle(df,random_state=0)
- #查看随机化之后的数据情况
- df.head()
将数据按照8:1:1分为训练集、验证信和测试集三部分、
- msk = np.random.rand(len(df)) < 0.8
- train = df[msk]
- dev_test = df[~msk]
- msk = np.random.rand(len(dev_test)) < 0.5
-
- dev = dev_test[msk]
- test = dev_test[~msk]
将数据集存为tsv格式,作为BERT模型的输入
- export_csv_train = train.to_csv ('./bert_input_data/level1_train.tsv', sep='\t', index = None, header=None)
- export_csv_dev = dev.to_csv ('./bert_input_data/level1_dev.tsv', sep='\t',index = None, header=None)
- export_csv_test = test.to_csv ('./bert_input_data/level1_test.tsv', sep='\t',index = None, header=None)
定义模型超参
- MODEL_OUTPUT_DIR = "./bert_output/"
- init_checkpoint = "./chinese_wwm_ext_L-12_H-768_A-12/bert_model.ckpt"
- bert_config_file = "./chinese_wwm_ext_L-12_H-768_A-12/bert_config.json"
- vocab_file = "./chinese_wwm_ext_L-12_H-768_A-12/vocab.txt"
- save_checkpoints_steps = 200
- iterations_per_loop = 100
- num_tpu_cores = 4
- warmup_proportion =100
- train_batch_size = 1
- learning_rate=5e-5
- eval_batch_size =1
- predict_batch_size=2
- max_seq_length =16
- data_dir = "./bert_input_data/"
- #清理模型输出目录,减少磁盘占用
- !rm bert_output -rf
BERT算法数据准备及训练代码:
- class InputExample(object):
- """A single training/test example for simple sequence classification."""
-
- def __init__(self, guid, text_a, text_b=None, label=None):
- self.guid = guid
- self.text_a = text_a
- self.text_b = text_b
- self.label = label
-
-
- class PaddingInputExample(object):
- pass
-
-
- class InputFeatures(object):
- """A single set of features of data."""
-
- def __init__(self,
- input_ids,
- input_mask,
- segment_ids,
- label_id,
- is_real_example=True):
- self.input_ids = input_ids
- self.input_mask = input_mask
- self.segment_ids = segment_ids
- self.label_id = label_id
- self.is_real_example = is_real_example
-
-
- class DataProcessor(object):
- """Base class for data converters for sequence classification data sets."""
-
- def get_train_examples(self, data_dir):
- """Gets a collection of `InputExample`s for the train set."""
- raise NotImplementedError()
-
- def get_dev_examples(self, data_dir):
- """Gets a collection of `InputExample`s for the dev set."""
- raise NotImplementedError()
-
- def get_test_examples(self, data_dir):
- """Gets a collection of `InputExample`s for prediction."""
- raise NotImplementedError()
-
- def get_labels(self):
- """Gets the list of labels for this data set."""
- raise NotImplementedError()
-
- @classmethod
- def _read_tsv(cls, input_file, quotechar=None):
- """Reads a tab separated value file."""
- with tf.gfile.Open(input_file, "r") as f:
- reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
- lines = []
- for line in reader:
- lines.append(line)
- return lines
-
- class SHLibProcessor(DataProcessor):
- """Processor for the SHlib data set ."""
- def __init__(self, label_list):
- self.static_label_list = load_labels(label_list)
-
- def get_train_examples(self, train_lines):
- """See base class."""
- return self._create_examples(train_lines, "train")
-
- def get_dev_examples(self, eval_lines):
- """See base class."""
- return self._create_examples(eval_lines, "dev")
-
- def get_test_examples(self, predict_lines):
- """See base class."""
- return self._create_examples(predict_lines, "test")
-
- def get_labels(self):
- """See base class."""
- return self.static_label_list
-
-
- def _create_examples(self, lines, set_type):
- """Creates examples for the training and dev sets."""
- examples = []
- for (i, line) in enumerate(lines):
-
- guid = line[0]# "%s-%s" % (set_type, i)
- if set_type == "test":
- text_a = tokenization.convert_to_unicode(line[1])
- label = tokenization.convert_to_unicode(line[2])
- else:
- text_a = tokenization.convert_to_unicode(line[1])
- label = tokenization.convert_to_unicode(line[2])
- examples.append(
- InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
- return examples
-
-
- def load_labels(self, label_file_path):
- with open(label_file_path,'r') as label_file:
- static_label_list = list(label_file.read().splitlines())
- print(static_label_list)
- return static_label_list
-
- def convert_single_example(ex_index, example, label_list, max_seq_length,
- tokenizer):
- """Converts a single `InputExample` into a single `InputFeatures`."""
-
- if isinstance(example, PaddingInputExample):
- return InputFeatures(
- input_ids=[0] * max_seq_length,
- input_mask=[0] * max_seq_length,
- segment_ids=[0] * max_seq_length,
- label_id=0,
- is_real_example=False)
-
- label_map = {}
- for (i, label) in enumerate(label_list):
- label_map[label] = i
-
- tokens_a = tokenizer.tokenize(example.text_a)
- tokens_b = None
- if example.text_b:
- tokens_b = tokenizer.tokenize(example.text_b)
-
- if tokens_b:
- _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
- else:
- # Account for [CLS] and [SEP] with "- 2"
- if len(tokens_a) > max_seq_length - 2:
- tokens_a = tokens_a[0:(max_seq_length - 2)]
-
- tokens = []
- segment_ids = []
- tokens.append("[CLS]")
- segment_ids.append(0)
- for token in tokens_a:
- tokens.append(token)
- segment_ids.append(0)
- tokens.append("[SEP]")
- segment_ids.append(0)
-
- if tokens_b:
- for token in tokens_b:
- tokens.append(token)
- segment_ids.append(1)
- tokens.append("[SEP]")
- segment_ids.append(1)
-
- input_ids = tokenizer.convert_tokens_to_ids(tokens)
-
- # The mask has 1 for real tokens and 0 for padding tokens. Only real
- # tokens are attended to.
- input_mask = [1] * len(input_ids)
-
- # Zero-pad up to the sequence length.
- while len(input_ids) < max_seq_length:
- input_ids.append(0)
- input_mask.append(0)
- segment_ids.append(0)
-
- assert len(input_ids) == max_seq_length
- assert len(input_mask) == max_seq_length
- assert len(segment_ids) == max_seq_length
-
- label_id = label_map[example.label]
- if ex_index < 3:
- print("*** Example ***")
- print("guid: %s" % (example.guid))
- print("tokens: %s" % " ".join(
- [tokenization.printable_text(x) for x in tokens]))
- print("input_ids: %s" % " ".join([str(x) for x in input_ids]))
- print("input_mask: %s" % " ".join([str(x) for x in input_mask]))
- print("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
- print("label: %s (id = %d)" % (example.label, label_id))
-
- feature = InputFeatures(
- input_ids=input_ids,
- input_mask=input_mask,
- segment_ids=segment_ids,
- label_id=label_id,
- is_real_example=True)
- return feature
-
-
- def file_based_convert_examples_to_features(examples, label_list, max_seq_length, tokenizer, output_file):
- """Convert a set of `InputExample`s to a TFRecord file."""
-
- writer = tf.python_io.TFRecordWriter(output_file)
-
- for (ex_index, example) in enumerate(examples):
- if ex_index % 10000 == 0:
- tf.logging.info("Writing example %d of %d" % (ex_index, len(examples)))
-
- feature = convert_single_example(ex_index, example, label_list,
- max_seq_length, tokenizer)
-
- def create_int_feature(values):
- f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
- return f
-
- features = collections.OrderedDict()
- features["input_ids"] = create_int_feature(feature.input_ids)
- features["input_mask"] = create_int_feature(feature.input_mask)
- features["segment_ids"] = create_int_feature(feature.segment_ids)
- features["label_ids"] = create_int_feature([feature.label_id])
- features["is_real_example"] = create_int_feature(
- [int(feature.is_real_example)])
-
- tf_example = tf.train.Example(features=tf.train.Features(feature=features))
- writer.write(tf_example.SerializeToString())
- writer.close()
-
-
- def file_based_input_fn_builder(input_file, seq_length, is_training,
- drop_remainder):
- """Creates an `input_fn` closure to be passed to TPUEstimator."""
-
- name_to_features = {
- "input_ids": tf.FixedLenFeature([seq_length], tf.int64),
- "input_mask": tf.FixedLenFeature([seq_length], tf.int64),
- "segment_ids": tf.FixedLenFeature([seq_length], tf.int64),
- "label_ids": tf.FixedLenFeature([], tf.int64),
- "is_real_example": tf.FixedLenFeature([], tf.int64),
- }
-
- def _decode_record(record, name_to_features):
- """Decodes a record to a TensorFlow example."""
- example = tf.parse_single_example(record, name_to_features)
-
- # tf.Example only supports tf.int64, but the TPU only supports tf.int32.
- # So cast all int64 to int32.
- for name in list(example.keys()):
- t = example[name]
- if t.dtype == tf.int64:
- t = tf.to_int32(t)
- example[name] = t
-
- return example
-
- def input_fn(params):
- """The actual input function."""
- batch_size = params["batch_size"]
-
- # For training, we want a lot of parallel reading and shuffling.
- # For eval, we want no shuffling and parallel reading doesn't matter.
- d = tf.data.TFRecordDataset(input_file)
- if is_training:
- d = d.repeat()
- d = d.shuffle(buffer_size=100)
-
- d = d.apply(
- tf.contrib.data.map_and_batch(
- lambda record: _decode_record(record, name_to_features),
- batch_size=batch_size,
- drop_remainder=drop_remainder))
-
- return d
-
- return input_fn
-
-
- def _truncate_seq_pair(tokens_a, tokens_b, max_length):
- """Truncates a sequence pair in place to the maximum length."""
-
- # This is a simple heuristic which will always truncate the longer sequence
- # one token at a time. This makes more sense than truncating an equal percent
- # of tokens from each, since if one sequence is very short then each token
- # that's truncated likely contains more information than a longer sequence.
- while True:
- total_length = len(tokens_a) + len(tokens_b)
- if total_length <= max_length:
- break
- if len(tokens_a) > len(tokens_b):
- tokens_a.pop()
- else:
- tokens_b.pop()
-
-
- def create_model(bert_config, is_training, input_ids, input_mask, segment_ids,
- labels, num_labels, use_one_hot_embeddings):
- """Creates a classification model."""
- model = modeling.BertModel(
- config=bert_config,
- is_training=is_training,
- input_ids=input_ids,
- input_mask=input_mask,
- token_type_ids=segment_ids,
- use_one_hot_embeddings=use_one_hot_embeddings)
-
- # In the demo, we are doing a simple classification task on the entire
- # segment.
- #
- # If you want to use the token-level output, use model.get_sequence_output()
- # instead.
- output_layer = model.get_pooled_output()
-
- hidden_size = output_layer.shape[-1].value
-
- output_weights = tf.get_variable(
- "output_weights", [num_labels, hidden_size],
- initializer=tf.truncated_normal_initializer(stddev=0.02))
-
- output_bias = tf.get_variable(
- "output_bias", [num_labels], initializer=tf.zeros_initializer())
-
- with tf.variable_scope("loss"):
- if is_training:
- # I.e., 0.1 dropout
- output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
-
- logits = tf.matmul(output_layer, output_weights, transpose_b=True)
- logits = tf.nn.bias_add(logits, output_bias)
- probabilities = tf.nn.softmax(logits, axis=-1)
- log_probs = tf.nn.log_softmax(logits, axis=-1)
-
- one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)
-
- per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
- loss = tf.reduce_mean(per_example_loss)
-
- return (loss, per_example_loss, logits, probabilities)
-
-
- def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate,
- num_train_steps, num_warmup_steps, use_tpu,
- use_one_hot_embeddings):
- """Returns `model_fn` closure for TPUEstimator."""
-
- def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
- """The `model_fn` for TPUEstimator."""
-
- tf.logging.info("*** Features ***")
- for name in sorted(features.keys()):
- print(" name = %s, shape = %s" % (name, features[name].shape))
-
- input_ids = features["input_ids"]
- input_mask = features["input_mask"]
- segment_ids = features["segment_ids"]
- label_ids = features["label_ids"]
- is_real_example = None
- if "is_real_example" in features:
- is_real_example = tf.cast(features["is_real_example"], dtype=tf.float32)
- else:
- is_real_example = tf.ones(tf.shape(label_ids), dtype=tf.float32)
-
- is_training = (mode == tf.estimator.ModeKeys.TRAIN)
-
- (total_loss, per_example_loss, logits, probabilities) = create_model(
- bert_config, is_training, input_ids, input_mask, segment_ids, label_ids,
- num_labels, use_one_hot_embeddings)
-
- tvars = tf.trainable_variables()
- initialized_variable_names = {}
- scaffold_fn = None
- if init_checkpoint:
- (assignment_map, initialized_variable_names) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
- if use_tpu:
-
- def tpu_scaffold():
- tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
- return tf.train.Scaffold()
-
- scaffold_fn = tpu_scaffold
- else:
- tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
-
- tf.logging.info("**** Trainable Variables ****")
- for var in tvars:
- init_string = ""
- if var.name in initialized_variable_names:
- init_string = ", *INIT_FROM_CKPT*"
- tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape,
- init_string)
-
- output_spec = None
- if mode == tf.estimator.ModeKeys.TRAIN:
-
- train_op = optimization.create_optimizer(
- total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)
-
- output_spec = tf.contrib.tpu.TPUEstimatorSpec(
- mode=mode,
- loss=total_loss,
- train_op=train_op,
- scaffold_fn=scaffold_fn)
- elif mode == tf.estimator.ModeKeys.EVAL:
-
- def metric_fn(per_example_loss, label_ids, logits, is_real_example):
- predictions = tf.argmax(logits, axis=-1, output_type=tf.int32)
- accuracy = tf.metrics.accuracy(
- labels=label_ids, predictions=predictions, weights=is_real_example)
- loss = tf.metrics.mean(values=per_example_loss, weights=is_real_example)
- return {
- "eval_accuracy": accuracy,
- "eval_loss": loss,
- }
-
- eval_metrics = (metric_fn,
- [per_example_loss, label_ids, logits, is_real_example])
- output_spec = tf.contrib.tpu.TPUEstimatorSpec(
- mode=mode,
- loss=total_loss,
- eval_metrics=eval_metrics,
- scaffold_fn=scaffold_fn)
- else:
- # predictions = tf.argmax(logits, axis=-1, output_type=tf.int32)
- # is_predicting = True
- # (predicted_labels, log_probs) = create_model(
- # is_predicting, input_ids, input_mask, segment_ids, label_ids, num_labels)
-
- log_probs = tf.nn.log_softmax(logits, axis=-1)
- probabilities = tf.nn.softmax(logits, axis=-1)
-
- predicted_labels = tf.squeeze(tf.argmax(log_probs, axis=-1, output_type=tf.int32))
- predictions = {
- 'probabilities': log_probs,
- 'labels': predicted_labels
-
- }
- output_spec = tf.contrib.tpu.TPUEstimatorSpec(
- mode=mode,
- predictions= predictions,#{"probabilities": probabilities},
- scaffold_fn=scaffold_fn)
- return output_spec
-
- return model_fn
-
-
- # This function is not used by this file but is still used by the Colab and
- # people who depend on it.
- def input_fn_builder(features, seq_length, is_training, drop_remainder):
- """Creates an `input_fn` closure to be passed to TPUEstimator."""
-
- all_input_ids = []
- all_input_mask = []
- all_segment_ids = []
- all_label_ids = []
-
- for feature in features:
- all_input_ids.append(feature.input_ids)
- all_input_mask.append(feature.input_mask)
- all_segment_ids.append(feature.segment_ids)
- all_label_ids.append(feature.label_id)
-
- def input_fn(params):
- """The actual input function."""
- batch_size = params["batch_size"]
-
- num_examples = len(features)
-
- # This is for demo purposes and does NOT scale to large data sets. We do
- # not use Dataset.from_generator() because that uses tf.py_func which is
- # not TPU compatible. The right way to load data is with TFRecordReader.
- d = tf.data.Dataset.from_tensor_slices({
- "input_ids":
- tf.constant(
- all_input_ids, shape=[num_examples, seq_length],
- dtype=tf.int32),
- "input_mask":
- tf.constant(
- all_input_mask,
- shape=[num_examples, seq_length],
- dtype=tf.int32),
- "segment_ids":
- tf.constant(
- all_segment_ids,
- shape=[num_examples, seq_length],
- dtype=tf.int32),
- "label_ids":
- tf.constant(all_label_ids, shape=[num_examples], dtype=tf.int32),
- })
-
- if is_training:
- d = d.repeat()
- d = d.shuffle(buffer_size=100)
-
- d = d.batch(batch_size=batch_size, drop_remainder=drop_remainder)
- return d
-
- return input_fn
-
-
- # This function is not used by this file but is still used by the Colab and
- # people who depend on it.
- def convert_examples_to_features(examples, label_list, max_seq_length,
- tokenizer):
- """Convert a set of `InputExample`s to a list of `InputFeatures`."""
-
- features = []
- for (ex_index, example) in enumerate(examples):
- if ex_index % 1000 == 0:
- tf.logging.info("Writing example %d of %d" % (ex_index, len(examples)))
-
- feature = convert_single_example(ex_index, example, label_list,
- max_seq_length, tokenizer)
-
- features.append(feature)
- return features
- class BTrainer(object):
- def __init__(self, train_list, predict_list, lable_list, output_dir, num_train_epochs):
- self.output_dir = output_dir
- tokenization.validate_case_matches_checkpoint(True, init_checkpoint)
-
- self.bert_config = modeling.BertConfig.from_json_file(bert_config_file)
- tf.gfile.MakeDirs(self.output_dir)
-
- self.processor = SHLibProcessor(lable_list)
- self.label_list = self.processor.get_labels()
-
- self.tokenizer = tokenization.FullTokenizer(
- vocab_file=vocab_file, do_lower_case=True)
-
- tpu_cluster_resolver = None
-
- is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
- self.run_config = tf.contrib.tpu.RunConfig(
- cluster=tpu_cluster_resolver,
- keep_checkpoint_max=1,
- master=None,
- model_dir=self.output_dir,
- save_checkpoints_steps=save_checkpoints_steps,
- tpu_config=tf.contrib.tpu.TPUConfig(
- iterations_per_loop=iterations_per_loop,
- num_shards=num_tpu_cores,
- per_host_input_for_training=is_per_host))
-
- num_train_steps = None
- num_warmup_steps = None
-
- self.train_examples = self.processor.get_train_examples(train_list)
- self.num_train_steps = int(len(self.train_examples) / train_batch_size * num_train_epochs)
- num_warmup_steps = int(self.num_train_steps * warmup_proportion)
-
- self.predict_examples = self.processor.get_test_examples(predict_list)
-
- model_fn = model_fn_builder(
- bert_config=self.bert_config,
- num_labels=len(self.label_list),
- init_checkpoint=init_checkpoint,
- learning_rate=learning_rate,
- num_train_steps=self.num_train_steps,
- num_warmup_steps=num_warmup_steps,
- use_tpu=False,
- use_one_hot_embeddings=False)
-
- # If TPU is not available, this will fall back to normal Estimator on CPU
- # or GPU.
- self.estimator = tf.contrib.tpu.TPUEstimator(
- use_tpu=False,
- model_fn=model_fn,
- config=self.run_config,
- train_batch_size=train_batch_size,
- eval_batch_size=eval_batch_size,
- predict_batch_size=predict_batch_size)
-
- def do_train(self):
- try:
- train_file = os.path.join(self.output_dir, "train.tf_record")
- file_based_convert_examples_to_features(
- self.train_examples, self.label_list, max_seq_length, self.tokenizer, train_file)
- print("***** Running training *****")
-
- train_input_fn = file_based_input_fn_builder(
- input_file=train_file,
- seq_length=max_seq_length,
- is_training=True,
- drop_remainder=True)
- self.estimator.train(input_fn=train_input_fn, max_steps=self.num_train_steps)
- print("train complete")
- except Exception:
- traceback.print_exc()
- return -4
-
- return 1
-
- def do_predict(self):
- num_actual_predict_examples = len(self.predict_examples)
-
- predict_file = os.path.join(self.output_dir, "predict.tf_record")
- file_based_convert_examples_to_features(self.predict_examples, self.label_list,
- max_seq_length, self.tokenizer,
- predict_file)
-
- predict_drop_remainder = True
- predict_input_fn = file_based_input_fn_builder(
- input_file=predict_file,
- seq_length=max_seq_length,
- is_training=False,
- drop_remainder=predict_drop_remainder)
-
- result = self.estimator.predict(input_fn=predict_input_fn)
- acc = 0
- output_predict_file = os.path.join(self.output_dir, "test_results.tsv")
- with tf.gfile.GFile(output_predict_file, "w") as writer:
- num_written_lines = 0
- print("***** Predict results *****")
- correct_count = 0
- for (i, prediction) in enumerate(result):
- if i >= num_actual_predict_examples:
- break
- if self.predict_examples[i].label == self.label_list[prediction['labels']]:
- correct_count += 1
- num_written_lines += 1
- writer.write(str(self.predict_examples[i].guid) + "\t" + str(self.predict_examples[i].text_a)
- + "\t" + str(self.predict_examples[i].label)
- + "\t" + str(self.label_list[prediction['labels']]) + "\n")
-
- acc = correct_count/num_written_lines
- print("total count:", num_written_lines, " correct:",correct_count," accuracy:",acc)
- return acc
#定义读取tsv和加载标签的方法
- def _read_tsv(input_file, quotechar=None):
- """Reads a tab separated value file."""
- with tf.gfile.Open(input_file, "r") as f:
- reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
- lines = []
- for line in reader:
- lines.append(line)
- return lines
-
- def load_labels(label_file_path):
- with open(label_file_path,'r') as label_file:
- static_label_list = list(label_file.read().splitlines())
- return static_label_list
准备训练数据
- train_file_path = "./bert_input_data/level1_train.tsv"
- dev_file_path = "./bert_input_data/level1_dev.tsv"
- test_file_path = "./bert_input_data/level1_test.tsv"
-
- label_file_path = "./bert_input_data/label.txt"
- train_epoch = 1
定义模型训练方法
- ef f_train_model(train_file_path,dev_file_path, lable_file_path,train_epoch):
- if not os.path.exists(train_file_path) or not os.path.exists(train_file_path):
- ret_value = 3
- return ret_value
-
- label_list = load_labels(lable_file_path)
- if len(label_list) <= 1:
- ret_value = 4
- return ret_value
-
- train = _read_tsv(train_file_path)
- if len(train) <= 20:
- ret_value = 5
- return ret_value
-
-
- dev = _read_tsv(dev_file_path)
-
- print("train length:",len(train))
- print("val length:",len(dev))
-
- trainer = BTrainer(train, dev, lable_file_path, MODEL_OUTPUT_DIR, train_epoch)
- return trainer.do_train()
- #训练模型
- f_train_model(train_file_path, dev_file_path, label_file_path, train_epoch)
不知道怎么解决啊!
定义模型验证方法
- def f_test_model(train_file_path,test_file_path, lable_file_path):
- if not os.path.exists(train_file_path) or not os.path.exists(train_file_path):
- ret_value = 3
- return ret_value
-
- label_list = load_labels(lable_file_path)
- if len(label_list) <= 1:
- ret_value = 4
- return ret_value
-
- train = _read_tsv(train_file_path)
- if len(train) <= 10:
- ret_value = 5
- return ret_value
-
- test = _read_tsv(test_file_path)
-
- print("test length:",len(test))
-
- trainer = BTrainer(train, test, lable_file_path, MODEL_OUTPUT_DIR, 0)
- return trainer.do_predict()
- #模训测试
- f_test_model(train_file_path, test_file_path, label_file_path)
好难搞啊,先放一放。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。