当前位置:   article > 正文

深度学习

深度学习是一种特殊的机器学习 源于什么研究

这里写图片描述

深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。

深度学习是机器学习中一种基于对数据进行表征学习的方法。观测值(例如一幅图像)可以使用多种方式来表示,如每个像素强度值的向量,或者更抽象地表示成一系列边、特定形状的区域等。而使用某些特定的表示方法更容易从实例中学习任务(例如,人脸识别或面部表情识别)。深度学习的好处是用非监督式或半监督式的特征学习和分层特征提取高效算法来替代手工获取特征。

深度学习的核心思想:
①无监督学习用于每一层网络的pre-train;
②每次用无监督学习只训练一层,将其训练结果作为其高一层的输入;
③用自顶而下的监督算法去调整所有层

从一个输入中产生一个输出所涉及的计算可以通过一个流向图(flow graph)来表示:流向图是一种能够表示计算的图,在这种图中每一个节点表示一个基本的计算以及一个计算的值,计算的结果被应用到这个节点的子节点的值。考虑这样一个计算集合,它可以被允许在每一个节点和可能的图结构中,并定义了一个函数族。输入节点没有父节点,输出节点没有子节点。

这种流向图的一个特别属性是深度(depth):从一个输入到一个输出的最长路径的长度。

传统的前馈神经网络能够被看做拥有等于层数的深度(比如对于输出层为隐层数加1)。SVMs有深度2(一个对应于核输出或者特征空间,另一个对应于所产生输出的线性混合)。

人工智能研究的方向之一,是以所谓 “专家系统” 为代表的,用大量 “如果-就” (If - Then) 规则定义的,自上而下的思路。人工神经网络 ( Artifical Neural Network),标志着另外一种自下而上的思路。神经网络没有一个严格的正式定义。它的基本特点,是试图模仿大脑的神经元之间传递,处理信息的模式。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/你好赵伟/article/detail/93679
推荐阅读
相关标签
  

闽ICP备14008679号