赞
踩
pyhton代码和echarts代码
option = { toolbox: { show: true, feature: { dataView: {show:true}, saveAsImage: { //excludeComponents :['toolbox'], pixelRatio: 20 } } }, tooltip: { legend: {}, trigger: 'axis', axisPointer: { type: 'none' }, formatter: function (params) { return params[0].name + ': ' + params[0].value; } }, xAxis: { data: ['建设艺术馆', '建设科技创展馆', '建设儒商文化长廊', '建设财经特色博物馆', '建设茶园校区文化景观集群' ,'其他'], axisTick: {show: false}, axisLine: {show: false}, axisLabel: { textStyle: { color: '#00000', }, //rotate:90, interval: 0, formatter:function(value) { return value.split("").join("\n"); }, textStyle: { fontSize : 16 //更改坐标轴文字大小 } } }, yAxis: { splitLine: {show: false}, axisTick: {show: false}, axisLine: {show: false}, axisLabel: {show: false} }, grid: [ {bottom: '50%'}, {top: '10%'} ], color: ['#89DA4F','#FCC828','#8EC7F4','#CDCBEC','#14B961'], series: [{ name: 'hill', barWidth :99, type: 'pictorialBar', barCategoryGap: '0%', // symbol: 'path://M0,10 L10,10 L5,0 L0,10 z', symbol: 'path://path://M10 600 Q 95 0 180 600', label:{ normal:{ show: true, position: 'top', formatter:'{c}%', fontSize:19 } }, itemStyle: { normal: { opacity: 1, color: function (params){ var colorList = ['#89DA4F','#FCC828','#8EC7F4','#CDCBEC','#14B961','#FF99FF']; return colorList[params.dataIndex]; } }, emphasis: { opacity: 1 } }, data: [18.28, 27.03, 10.27, 21.70, 13.88,8.83], }] };
var scale = 1; option = { tooltip : { trigger: 'item', formatter: "{a} <br/>{b} : {c} ({d}%)" }, title: { text:'学生', left:'center', top:'47%', // padding:[24,0], textStyle:{ color:'#031f2d', fontSize:20*scale, align:'center' } }, series: [ { name: '半径模式', type: 'pie', radius: [50, 130], center: ['50%', '50%'], roseType: 'radius', labelLine:{ normal:{ length:0.1, // 改变标示线的长度 lineStyle: { } }, }, avoidLabelOverlap: false, hoverAnimation: true, label: { emphasis: {//中间文字显示 show: false, } }, emphasis: { label: { show: true, } }, data: [ {value: 35, name: '新建一些亭台楼阁\n休读和休闲点', }, {value: 19, name: '完善校内人性化人行步道\n系统', itemStyle: { color: '#FF9966', }, }, {value: 5, name: '再建一些先贤大儒代表\n人物雕塑群或代表我校\n大学精神的雕塑群', itemStyle: { color: '#CC99CC', }, }, {value: 19, name: '美化现有建筑物环境和墙面'}, {value: 19, name: '开展主题化区域绿化\n(如桂花区香樟区等)'}, {value: 2, name: '其他'}, ] }, ] };
option = { toolbox: { show: true, feature: { dataView: {show:true}, saveAsImage: { //excludeComponents :['toolbox'], pixelRatio: 20 } } }, series: [ { name: '半径模式', type: 'pie', radius: [50, 110], center: ['49%', '29%'], roseType: 'radius', labelLine:{ normal:{ length:0.1, // 改变标示线的长度 lineStyle: { } }, }, avoidLabelOverlap: false, label: { normal: { show: true, position: 'center', color:'#4c4a4a', formatter: '{total|'+'学生}', rich: { total:{ fontSize: 18, fontFamily : "微软雅黑", color:'#454c5c' }, active: { fontFamily : "微软雅黑", fontSize: 17, color:'#6c7a89', lineHeight:30, }, } }, emphasis: {//中间文字显示 show: true, } }, data: [ {value: 36.56, name: '新建一些亭台楼阁\n休读和休闲点', }, {value: 18.51, name: '完善校内人性化人行步道\n系统', itemStyle: { color: '#FF9966', }, }, {value: 4.65, name: '再建一些先贤大儒代表\n人物雕塑群或代表我校\n大学精神的雕塑群', itemStyle: { color: '#CC99CC', }, }, {value: 19.53, name: '美化现有建筑物环境和墙面'}, {value: 18.51, name: '开展主题化区域绿化\n(如桂花区香樟区等)'}, {value: 2.25, name: '其他'}, ] }, { name: '半径模式', type: 'pie', radius: [50, 130], center: ['23%', '70%'], roseType: 'radius', labelLine:{ normal:{ length:0.1, // 改变标示线的长度 lineStyle: { } }, }, avoidLabelOverlap: false, label: { normal: { show: true, position: 'center', color:'#4c4a4a', formatter: '{total|'+'教师}', rich: { total:{ fontSize: 18, fontFamily : "微软雅黑", color:'#454c5c' }, active: { fontFamily : "微软雅黑", fontSize: 17, color:'#6c7a89', lineHeight:30, }, } }, emphasis: {//中间文字显示 show: true, } }, data: [ {value: 23.06, name: '新建一些亭台楼阁\n休读和休闲点', }, {value: 28.15, name: '完善校内人性化人行步道\n系统', itemStyle: { color: '#FF9966', }, }, {value: 4.83, name: '再建一些先贤大儒代表\n人物雕塑群或代表我校\n大学精神的雕塑群', itemStyle: { color: '#CC99CC', }, }, {value: 15.01, name: '美化现有建筑物环境和墙面'}, {value: 24.93, name: '开展主题化区域绿化\n(如桂花区香樟区等)'}, {value: 4.02, name: '其他'}, ] }, { name: '半径模式', type: 'pie', radius: [50, 130], center: ['77%', '70%'], roseType: 'radius', labelLine:{ normal:{ length:0.1, // 改变标示线的长度 lineStyle: { } }, }, avoidLabelOverlap: false, label: { normal: { show: true, position: 'center', color:'#4c4a4a', formatter: '{total|'+'校友}', rich: { total:{ fontSize: 18, fontFamily : "微软雅黑", color:'#454c5c' }, active: { fontFamily : "微软雅黑", fontSize: 17, color:'#6c7a89', lineHeight:30, }, } }, emphasis: {//中间文字显示 show: true, } }, data: [ {value: 22.64, name: '新建一些亭台楼阁\n休读和休闲点', }, {value: 16.98, name: '完善校内人性化人行步道\n系统', itemStyle: { color: '#FF9966', }, }, {value: 11.32, name: '再建一些先贤大儒代表\n人物雕塑群或代表我校\n大学精神的雕塑群', itemStyle: { color: '#CC99CC', }, }, {value: 24.53, name: '美化现有建筑物环境和墙面'}, {value: 20.75, name: '开展主题化区域绿化\n(如桂花区香樟区等)'}, {value: 3.77, name: '其他'}, ] }, ] };
模糊综合评价的图
echarts代码
var pathSymbols = { reindeer: 'image://', plane: 'image://', rocket: 'image://', train: 'image://', ship: 'image://', }; option = { toolbox: { show: true, feature: { dataView: {show:true}, saveAsImage: { //excludeComponents :['toolbox'], pixelRatio: 20 } } }, backgroundColor:'' ,//设置无背景色 tooltip: { trigger: 'axis', axisPointer: { type: 'none' }, formatter: function (params) { return params[0].name + ': ' + params[0].value; } }, xAxis: { data: ['很满意', '满意', '一般', '不满意', '很不满意'], axisTick: {show: false}, axisLine: {show: false}, axisLabel: { color: '#e5435', textStyle: { fontSize : 16 //更改坐标轴文字大小 } } }, yAxis: { splitLine: {show: false}, axisTick: {show: false}, axisLine: {show: true}, offset: 40, axisLabel: {show: true, textStyle: { fontSize: '13',//字体大小 }, } }, color: ['#242424'], series: [{ name: 'hill', type: 'pictorialBar', barCategoryGap: '-80%', // symbol: 'path://M0,10 L10,10 L5,0 L0,10 z', symbol: 'path://M0,10 L10,10 C5.5,10 5.5,5 5,0 C4.5,5 4.5,10 0,10 z', itemStyle: { opacity: 0.5 }, emphasis: { itemStyle: { opacity: 1 } }, data: [0.339, 0.441, 0.195, 0.02, 0.005], z: 10 }, { name: 'glyph', type: 'pictorialBar', barGap: '-100%', symbolPosition: 'end', symbolSize: 50, symbolOffset: [0, '-120%'], data: [{ value: 0.339, symbol: pathSymbols.reindeer, symbolSize: [60, 55] }, { value: 0.441, symbol: pathSymbols.rocket, symbolSize: [60, 55] }, { value: 0.195, symbol: pathSymbols.plane, symbolSize: [60, 55] }, { value: 0.02, symbol: pathSymbols.train, symbolSize: [60, 55] }, { value: 0.005, symbol: pathSymbols.ship, symbolSize: [60, 55] }] }] };
Discrete distribution as horizontal bar chart
import numpy as np import matplotlib.pyplot as plt category_names = ['Strongly disagree', 'Disagree', 'Neither agree nor disagree', 'Agree', 'Strongly agree'] results = { 'Question 1': [10, 15, 17, 32, 26], 'Question 2': [26, 22, 29, 10, 13], 'Question 3': [35, 37, 7, 2, 19], 'Question 4': [32, 11, 9, 15, 33], 'Question 5': [21, 29, 5, 5, 40], 'Question 6': [8, 19, 5, 30, 38] } def survey(results, category_names): """ Parameters ---------- results : dict A mapping from question labels to a list of answers per category. It is assumed all lists contain the same number of entries and that it matches the length of *category_names*. category_names : list of str The category labels. """ labels = list(results.keys()) data = np.array(list(results.values())) data_cum = data.cumsum(axis=1) category_colors = plt.get_cmap('RdYlGn')( np.linspace(0.15, 0.85, data.shape[1])) fig, ax = plt.subplots(figsize=(9.2, 5)) ax.invert_yaxis() ax.xaxis.set_visible(False) ax.set_xlim(0, np.sum(data, axis=1).max()) for i, (colname, color) in enumerate(zip(category_names, category_colors)): widths = data[:, i] starts = data_cum[:, i] - widths ax.barh(labels, widths, left=starts, height=0.5, label=colname, color=color) xcenters = starts + widths / 2 r, g, b, _ = color text_color = 'white' if r * g * b < 0.5 else 'darkgrey' for y, (x, c) in enumerate(zip(xcenters, widths)): ax.text(x, y, str(int(c)), ha='center', va='center', color=text_color) ax.legend(ncol=len(category_names), bbox_to_anchor=(0, 1), loc='lower left', fontsize='small') return fig, ax survey(results, category_names) plt.show()
import matplotlib.pyplot as plt plt.rcParams['font.sans-serif']=['KaiTi'] plt.rcParams['axes.unicode_minus']=False group_names=['吉祥物(73%)', '其他(3%)', '校花(16%)', '校树(8%)'] group_size=[2585,95,563,301] subgroup_names=['', '','学生','', '','学生','', '','学生','', '','学生'] subgroup_size=[221 ,36, 2328,34, 2 ,59,56, 8 ,499,62 ,7, 232] # Create colors # 设置颜色 a, b, c,d=['#41555d','#646464','#969696','#DDDDDD'] # First Ring (outside) # 外圈 fig, ax = plt.subplots() # 设置等比例轴,x和y轴等比例 ax.axis('equal') # 画饼图 mypie, _ = ax.pie(group_size, radius=1.3, labels=group_names, textprops={'fontsize': 12},colors=[a, b, c,d],wedgeprops=dict(width=0.3, edgecolor='white')); # Second Ring (Inside) # 画第二个圆 mypie2, _ = ax.pie(subgroup_size, radius=1.3-0.3, labels=subgroup_names,textprops={'fontsize': 11}, labeldistance=0.7, colors=['#e9f1f6', '#e3f9fd','#a1afc9','#e9f1f6', '#e3f9fd','#FFCC99','#e9f1f6', '#e3f9fd','#c0ebd7','#e9f1f6', '#e3f9fd','#edd1d8'],wedgeprops=dict(width=0.6, edgecolor='white')); # ax.labels() plt.margins(0,0);
import matplotlib.pyplot as plt plt.rcParams['font.sans-serif']=['KaiTi'] plt.rcParams['axes.unicode_minus']=False group_names=['吉祥物(73%)', '其他(3%)', '校花(16%)', '校树(8%)'] group_size=[2585,95,563,301] subgroup_names=['', '','学生','', '','学生','', '','学生','', '','学生'] subgroup_size=[221 ,36, 2328,34, 2 ,59,56, 8 ,499,62 ,7, 232] # Create colors # 设置颜色 a, b, c,d=['#a1afc9','#ffc64b','#7fecad','#DDDDDD'] # First Ring (outside) # 外圈 fig, ax = plt.subplots() # 设置等比例轴,x和y轴等比例 ax.axis('equal') # 画饼图 mypie, _ = ax.pie(group_size, radius=1.3, labels=group_names, textprops={'fontsize': 12},colors=[a, b, c,d],wedgeprops=dict(width=0.3, edgecolor='white')); # Second Ring (Inside) # 画第二个圆 mypie2, _ = ax.pie(subgroup_size, radius=1.3-0.5, labels=subgroup_names,textprops = dict(rotation_mode = 'anchor', fontsize= 11, va='center', ha='center'), colors=['#FFFFFF', '#FFFFFF','#99CCFF','#FFFFFF', '#FFFFFF','#FFFF66','#FFFFFF', '#FFFFFF','#c0ebd7','#FFFFFF', '#FFFFFF','#edd1d8'],wedgeprops=dict(width=0.6, edgecolor='white')); # ax.labels() plt.margins(0,0);
import matplotlib.pyplot as plt import numpy as np fig, ax = plt.subplots() size = 0.3 vals = np.array([[60., 32.,12], [37., 40.,20], [29., 10.,30]]) # cmap参数接受一个值(每个值代表一种配色方案),并将该值对应的颜色图分配给当前图窗。 cmap = plt.get_cmap("tab20c") outer_colors = cmap(np.arange(3)*4) inner_colors = cmap(np.array([1, 2,3, 5, 6,7, 9, 10,11])) ax.pie(vals.sum(axis=1), radius=1, colors=outer_colors, wedgeprops=dict(width=size, edgecolor='w')) ax.pie(vals.flatten(), radius=1-size, colors=inner_colors, wedgeprops=dict(width=size, edgecolor='w')) ax.set(aspect="equal", title='Pie plot with `ax.pie`') plt.show()
import numpy as np import matplotlib.pyplot as plt y = [31.21,12.81,13.32,20.97,20.8,0.9] y1 = [19.3,19.3,17.96,24.93,16.09,2.41] y2 = [32.97,12.03,12.67,20.43,21.2,0.71] y3= [11.32,13.21,18.87,24.53,30.19,1.89] font = {'family':'simhei',#这里必须要有第12行的操作前提 'weight': 'normal', 'size': 12, }; index=np.arange(len(y)); #x = ['REST','LAPT','AUTO'] x = ['吉祥物公仔','校服','文化摆件','实用工具','重要纪念日产品','其他'] #总共有几组,就设置成几,我们这里有三组,所以设置为3 fig,axes=plt.subplots(nrows=2,ncols=2,figsize=(9,4)) plt.subplot(2,2,1) plt.bar(x, y,label='教师、学生与校友 ',color='#4B4B4B',hatch='\\',width=0.5) plt.xticks(rotation=15) plt.legend(loc = "best",prop=font,labelspacing=1) for a,b in zip(index,y): #柱子上的数字显示 plt.text(a,b,'%.2f'%b + '%',ha='center',va='bottom',fontsize=10); # plt.tight_layout() plt.subplot(2,2,2) plt.barh(x, y1, color = "#969696",label='教师',hatch="/") plt.legend(loc = "best",prop=font,labelspacing=1) # plt.tight_layout() plt.subplot(2,2,3) plt.barh(x, y2, color = "#75878a",label='学生',hatch="//") plt.legend(loc = "best",prop=font,labelspacing=1) plt.tight_layout() plt.subplot(2,2,4) plt.barh(x, y3, color = "#DDDDDD",label='校友',hatch="///") plt.legend(loc = "best",prop=font,labelspacing=1) plt.tight_layout() plt.show() plt.savefig(r'C:\Users\Administrator\Desktop\ig_cat.jpg', dpi=500) #指定分辨率保存
import numpy as np
import matplotlib.pyplot as plt
plt.figure(figsize=(6,5),dpi=150)
x1=np.array([1.5,10.52,87.89])
labels=["校友(1.5%)","教师(10.52%)","学生(87.89%)"]
plt.rcParams['font.sans-serif']=['KaiTi']
plt.rcParams['axes.unicode_minus']=False
plt.pie(x1,labels=labels,radius=1.0,
wedgeprops=dict(width=0.4,edgecolor='w'), textprops={'fontsize': 12},colors=['#FFCC99','#CCFF66','#99CCFF'])
plt.show()
# 导入绘图模块 import matplotlib.pyplot as plt # 构建数据 price = [39.5, 39.9, 45.4, 38.9, 33.34] # 绘图 plt.barh(range(5), price, align='center', color='steelblue', alpha=0.8) # 添加轴标签 plt.xlabel('price') # 添加标题 # plt.title('Books at different prices') # 添加刻度标签 plt.yticks(range(5), ['a', 'b', 'c', 'd', 'e']) # 设置Y轴的刻度范围 plt.xlim([32, 47]) # 为每个条形图添加数值标签 for x, y in enumerate(price): plt.text(y + 0.1, x, '%s' % y, va='center') plt.savefig('foo.png') # 显示图形 plt.show()
import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import seaborn as sns sns.set(style="whitegrid") df =pd.read_clipboard() df plt.rcParams['font.sans-serif'] = ['SimHei'] #用来显示中文标签 plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号 plt.rcParams['savefig.dpi'] = 100 # 图片像素 plt.rcParams['figure.dpi'] = 100 # 分辨率 x = df.index fig,axes=plt.subplots(nrows=1,ncols=3,figsize=(10,6)) plt.subplot(1,3,1) sns.barplot(x,df['总的'],palette=sns.hls_palette(8 , l = .8, s = .5)) plt.xticks([]) # 不显示x轴 plt.ylabel('教师、学生与校友', fontsize=10) plt.yticks([]) # 不显示y轴 # plt.title('教师、学生与校友') plt.subplot(1.3,2) sns.barplot(x,df['学生'],palette=sns.light_palette('red',reverse=False)) plt.xticks([]) # 不显示x轴 plt.ylabel('学生') plt.yticks([]) # 不显示y轴 plt.subplot(1,3,3) sns.barplot(x,df['教师'],palette=sns.color_palette('Greens')) plt.xticks([]) # 不显示x轴 plt.ylabel('教师') plt.yticks([]) # 不显示y轴 plt.subplot(4,1,4) sns.barplot(x,df['校友'],palette=sns.color_palette('Blues')) plt.xticks(rotation=14) # 不显示x轴 plt.ylabel('校友') plt.yticks([]) # 不显示y轴 plt.tick_params(labelsize=8) plt.savefig(r'C:\Users\Administrator\Desktop\2fig_cat.jpg', dpi=500) #指定分辨率保存
import pandas as pd import time import numpy as np from matplotlib import pyplot as plt dates = pd.date_range('20170101', periods=300) df = pd.DataFrame(np.random.rand(300,4), index=dates, columns=list('ABCD')) # ///按月份对商品数据求和 date_groupby = df.groupby(lambda x:pd.datetime.strftime(x,'%Y-%m')).apply(sum) # ///统计四种商品的出货总量占比 date_sum = df.apply(sum) date_ratio = date_sum/date_sum.sum() fig = plt.figure(figsize=(8,9)) ax_0 = fig.add_subplot(3, 1, 1 ) ax_0_twin = ax_0.twinx() ax_0_twin.bar(date_groupby.index,date_groupby["A"],width = 0.2,label = "A") plt.ylim((0, 25)) ax_0.plot(date_groupby.index,date_groupby["B"],color = "r", label = "B") ax_0_twin.set_title(r'Distribution over month',fontsize=15) ax_0.legend(loc=2, prop={'size': 12}) ax_0_twin.legend(loc=1, prop={'size': 12}) ax_0.set_ylabel(r'B_count',fontsize=11) ax_0_twin.set_ylabel(r'A_count',fontsize=11) ax_1 = fig.add_subplot(3, 2, 3 ) rng = np.random.RandomState(10) colors = rng.rand(50) sc = ax_1.scatter(df["A"].iloc[0:50],df["B"].iloc[0:50], c=colors,s=100*df["C"].iloc[0:50]) plt.colorbar(sc) ax_2 = fig.add_subplot(3, 2, 4 ) ax_2.pie(date_ratio, labels=date_ratio.index , autopct = '%3.1f%%', startangle = 180, shadow = True) ax_3 = fig.add_subplot(3, 1, 3 ) ax_3.hist(df["A"],bins = 100) ax_3.set_title(r'A hist over day',fontsize=15)
import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import seaborn as sns import matplotlib.patches as mpatches sns.set(style="whitegrid") df =pd.read_clipboard() df plt.rcParams['font.sans-serif'] = ['SimHei'] #用来显示中文标签 plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号 x = df.index fig,axes=plt.subplots(nrows=1,ncols=3,figsize=(6,4)) plt.subplot(1,3,1) sns.barplot(x,df['学生'],palette=sns.hls_palette(8 , l = .8, s = .5)) plt.xticks([]) # 不显示x轴 plt.xlabel('学生', fontsize=14) plt.yticks([]) # 不显示y轴 plt.ylabel(' ') ax=plt.gca() box = ax.get_position() ax.set_position([box.x0, box.y0, box.width , box.height]) patches=[mpatches.Patch(color='#DFBBB9', label='建设5G校园')] ax.legend(handles=patches, bbox_to_anchor=(1,1)) #生成legend plt.subplot(1,3,2) sns.barplot(x,df['教师'],palette=sns.hls_palette(8 , l = .8, s = .5)) plt.xticks([]) # 不显示x轴 plt.xlabel('教师', fontsize=14) plt.yticks([]) # 不显示y轴 plt.ylabel(' ') ax=plt.gca() box = ax.get_position() ax.set_position([box.x0, box.y0, box.width , box.height]) patches=[mpatches.Patch(color='#B9DDDF', label='建设"只跑一次\n或一次不跑"\n高效管理服务平台')] ax.legend(handles=patches,loc=2) #生成legend plt.subplot(1,3,3) sns.barplot(x,df['校友'],palette=sns.hls_palette(8 , l = .8, s = .5)) plt.xticks([]) # 不显示x轴 plt.xlabel('校友', fontsize=14) plt.yticks([]) # 不显示y轴 plt.ylabel(' ') ax=plt.gca() box = ax.get_position() ax.set_position([box.x0, box.y0, box.width , box.height]) patches=[mpatches.Patch(color='#DFD8B9', label='打造凸显大学精神的\n网络文化产品')] ax.legend(handles=patches,loc=1) #生成legend plt.savefig(r'C:\Users\Administrator\Desktop\2fig_cat.jpg', dpi=500) #指定分辨率保存
import plotly.figure_factory as ff
corrs = df.corr()
figure = ff.create_annotated_heatmap(z=corrs.values,x=list(corrs.columns),y=list(corrs.index), annotation_text=corrs.round(2).values, showscale=True)
// 指定图表的配置项和数据 var option = { tooltip: { trigger: 'item', formatter: "{a} <br/>{b}: {c} ({d}%)" }, color:["#27D9C8","#D8D8D8"], title:{ text:"80%", left:"center", top:"50%", textStyle:{ color:"#27D9C8", fontSize:36, align:"center" } }, graphic:{ type:"text", left:"center", top:"40%", style:{ text:"运动达标率", textAlign:"center", fill:"#333", fontSize:20, fontWeight:700 } }, series: [ { name: '运动情况', type: 'pie', radius: ['65%', '70%'], avoidLabelOverlap: false, label: { normal: { show: false, position: 'center' }, }, data: [ { value: 80, name: '已完成' }, { value: 20, name: '未完成' }, ] } ] };
var scale = 1; var echartData = [{ value: 2154, name: '曲阜师范大学' }, { value: 3854, name: '潍坊学院' }, { value: 3515, name: '青岛职业技术学院' }, { value: 3515, name: '淄博师范高等专科' }, { value: 3854, name: '鲁东大学' }, { value: 2154, name: '山东师范大学' }] var rich = { yellow: { color: "#ffc72b", fontSize: 30 * scale, padding: [5, 4], align: 'center' }, total: { color: "#ffc72b", fontSize: 40 * scale, align: 'center' }, white: { color: "#fff", align: 'center', fontSize: 14 * scale, padding: [21, 0] }, blue: { color: '#49dff0', fontSize: 16 * scale, align: 'center' }, hr: { borderColor: '#0b5263', width: '100%', borderWidth: 1, height: 0, } } option = { backgroundColor: '#031f2d', title: { text:'总考生数', left:'center', top:'53%', padding:[24,0], textStyle:{ color:'#fff', fontSize:18*scale, align:'center' } }, legend: { selectedMode:false, formatter: function(name) { var total = 0; //各科正确率总和 var averagePercent; //综合正确率 echartData.forEach(function(value, index, array) { total += value.value; }); return '{total|' + total + '}'; }, data: [echartData[0].name], // data: ['高等教育学'], // itemGap: 50, left: 'center', top: 'center', icon: 'none', align:'center', textStyle: { color: "#fff", fontSize: 16 * scale, rich: rich }, }, series: [{ name: '总考生数量', type: 'pie', radius: ['42%', '50%'], hoverAnimation: false, color: ['#c487ee', '#deb140', '#49dff0', '#034079', '#6f81da', '#00ffb4'], label: { normal: { formatter: function(params, ticket, callback) { var total = 0; //考生总数量 var percent = 0; //考生占比 echartData.forEach(function(value, index, array) { total += value.value; }); percent = ((params.value / total) * 100).toFixed(1); return '{white|' + params.name + '}\n{hr|}\n{yellow|' + params.value + '}\n{blue|' + percent + '%}'; }, rich: rich }, }, labelLine: { normal: { length: 55 * scale, length2: 0, lineStyle: { color: '#0b5263' } } }, data: echartData }] };
option = { toolbox: { show: true, feature: { dataView: {show:true}, saveAsImage: { //excludeComponents :['toolbox'], pixelRatio: 20 } } }, legend: [{ data: ['校领导', '中层干部', '教师、学生及校友'], icon: "roundRect", x:'center', y:'6%', textStyle: { //图例文字的样式 fontSize: 14 }, },{ data: ['很满意', '满意', '一般', '不满意','很不满意'], icon: "roundRect", x:'center', y:'50%', textStyle: { //图例文字的样式 fontSize: 14 }, }], tooltip: {}, dataset: { source: [ ['product', '很满意', '满意', '一般', '不满意','很不满意'], ['校领导', 16.1, 53.5, 23.6, 6.7,0.1], ['中层干部', 21, 48.4, 26.3, 4.1,0.2], ['教师、学生及校友', 33.9, 44.1, 19.5, 2,0.5] ] }, xAxis: [ {type: 'category', gridIndex: 0,axisLabel: { fontSize: 15 }}, {type: 'category', gridIndex: 1,axisLabel: { fontSize: 15 }}, ], yAxis: [ {gridIndex: 0}, {gridIndex: 1} ], grid: [ {bottom: '57%'}, {top: '57%'} ], series: [ // These series are in the first grid. {type: 'bar', seriesLayoutBy: 'row'}, {type: 'bar', seriesLayoutBy: 'row'}, {type: 'bar', seriesLayoutBy: 'row'}, // These series are in the second grid. {type: 'bar', xAxisIndex: 1, yAxisIndex: 1}, {type: 'bar', xAxisIndex: 1, yAxisIndex: 1}, {type: 'bar', xAxisIndex: 1, yAxisIndex: 1}, {type: 'bar', xAxisIndex: 1, yAxisIndex: 1}, {type: 'bar', xAxisIndex: 1, yAxisIndex: 1} ] };
import pandas as pd #导入数据分析模块 import numpy as np import matplotlib.pyplot as plt #导入绘图模块 plt.rcParams['font.sans-serif']='SimHei' data=pd.read_excel(r"C:\Users\Administrator\Desktop\数据.xlsx",index_col='身份') #读取数据 row_sum=data.sum(axis=1).apply(float) #按行求和 partion_data=data.div(row_sum,axis=0) #计算行百分比 rows,cols=data.shape #数据尺寸 fig,ax=plt.subplots(nrows=2,ncols=2,figsize=(8, 6)) #建立饼图坑 axes=ax.flatten() #将坑位展平 labels_=list(data.columns)#设置标签 colors_=["aliceblue","antiquewhite","aqua","aquamarine",'#33FF66','#FF6699'] #设置饼图配色 for row in range(rows): explode=[0, 0, 0, 0,0,0] #初始化突出位置 explode[labels_.index(partion_data.iloc[row,:].idxmax())]=0.09 #新的突出切片 axes[row].pie(partion_data.iloc[row,:],autopct='%1.1f%%',labels=labels_,colors=colors_, explode=explode,shadow=True) #绘制子饼图 axes[row].set_title(data.index[row]) #设置标题 plt.subplots_adjust(left=None, bottom=None, right=None, top=None,wspace=0.6, hspace=0.3) #调整子图间距 plt.savefig(r"C:\Users\Administrator\Desktop\pie.png",dpi=200) #保存图片
a = pd.read_excel('C:\\Users\\Administrator\\Desktop\\a.xlsx') plt.figure(figsize=(8,8)) plt.subplot(611) plt.plot(a['y_true'],color='#000000',label='y_true') plt.plot(a['GBRT'],linestyle='--',color='#808080',label='GBRT') plt.title('y_true与梯度提升决策树预测值比较') plt.xticks(range(8),a.iloc[:,0].tolist()) plt.legend(loc=1, prop={'size': 10}) # plt.subplots_adjust(hspace=0.9) plt.tight_layout() plt.subplot(612) plt.plot(a['y_true'],color='#000000',label='y_true') plt.plot(a['XGBoost'],linestyle='--',color='#808080',label='XGBoot') plt.title('y_true与XGBRegressor预测值比较') plt.xticks(range(8),a.iloc[:,0].tolist()) plt.subplots_adjust(left=None, bottom=0.2, right=None, top=0.5, wspace=None, hspace=None) plt.legend(loc=1, prop={'size': 10}) plt.tight_layout() plt.subplot(613) plt.plot(a['y_true'],color='#000000',label='y_true') plt.plot(a['ElasticNet'],linestyle='--',color='#808080',label='弹性网络') plt.title('y_true与弹性网络预测值比较') plt.xticks(range(8),a.iloc[:,0].tolist()) plt.legend(loc=1, prop={'size': 10}) plt.tight_layout() plt.subplot(614) plt.plot(a['y_true'],color='#000000',label='y_true') plt.plot(a['BayesianRidge'],linestyle='--',color='#808080',label='贝叶斯岭回归') plt.title('y_true与贝叶斯岭回归预测值比较') plt.xticks(range(8),a.iloc[:,0].tolist()) plt.legend(loc=1, prop={'size': 10}) plt.tight_layout() plt.subplot(615) plt.plot(a['y_true'],color='#000000',label='y_true') plt.plot(a['Bagging'],linestyle='--',color='#808080',label='Bagging') plt.title('y_true与Bagging预测值比较') plt.xticks(range(8),a.iloc[:,0].tolist()) plt.legend(loc=1, prop={'size': 10}) plt.tight_layout() plt.savefig(r'C:\Users\Administrator\Desktop\2fig_cat.jpg', dpi=500) #指定分辨率保存
.
library(tidyverse) library(ggthemes) coutry<-c('英国','中国大陆','美国','其他','澳大利亚','法国','日本','加拿大') rate<-c(29.8,22.9,17.7,15.8,1,4.8,4.3,3.6) rate_per<-paste(as.character(rate),'%',sep='') ad<-data.frame(type=coutry,n=rate,rate_per=rate_per) #ad = data.frame(type = c("Poster", "Billboard", "Bus", "Digital"),n = c(529, 356, 59, 81)) ad$fraction = ad$n / sum(ad$n) ad$ymax = cumsum(ad$fraction) ad$ymin = c(0, head(ad$ymax, n = -1)) p<-ggplot(data = ad, aes(fill = type, ymax = ymax, ymin = ymin, xmax = 4, xmin = 3)) + geom_rect(show.legend = F,alpha=0.8) + scale_fill_brewer(palette = 'Set3')+ coord_polar(theta = "y") + labs(x = "", y = "", title = "",fill='地区') + xlim(c(0, 5)) + theme_light() + theme(panel.grid=element_blank()) + ## 去掉白色外框 theme(axis.text=element_blank()) + ## 把图旁边的标签去掉 theme(axis.ticks=element_blank()) + ## 去掉左上角的坐标刻度线 theme(panel.border=element_blank()) + ## 去掉最外层的正方形边框 geom_text(aes(x = 4.6, y = ((ymin+ymax)/2),label = type) ,size=4)+ geom_text(aes(x = 3.5, y = ((ymin+ymax)/2),label = rate_per) ,size=3.6) ggsave('环形.png')
library(ggplot2) library(plyr) set.seed(1234) df = read.table('儿童呼吸道疾病.txt',header=T) head(df) mu <- ddply(df, 'Sex', summarise, grp.mean=mean(Height)) ggplot(df, aes(x=Height, fill=Sex)) + geom_histogram(aes(y=..density..), alpha=0.3,position='identity') + geom_density(alpha=0.3) + geom_vline(data=mu, aes(xintercept=grp.mean,color=Sex),linetype='dashed') + scale_color_grey() + theme_classic()+ theme(legend.position='top')
# Data data <- data.frame( name = c("DD","with himself","with DC","with Silur" ,"DC","with himself","with DD","with Silur" ,"Silur","with himself","with DD","with DC" ), average = sample(seq(1,10) , 12 , replace=T), number = sample(seq(4,39) , 12 , replace=T) ) # Increase bottom margin par(mar=c(6,4,4,4)) # Basic Barplot my_bar <- barplot(data$average , border=F , names.arg=data$name , las=2 , col=c(rgb(0.3,0.1,0.4,0.6) , rgb(0.3,0.5,0.4,0.6) , rgb(0.3,0.9,0.4,0.6) , rgb(0.3,0.9,0.4,0.6)) , ylim=c(0,13) , main="" ) # Add abline abline(v=c(4.9 , 9.7) , col="grey") # Add the text text(my_bar, data$average+0.4 , paste("n: ", data$number, sep="") ,cex=1) #Legende legend("topleft", legend = c("Alone","with Himself","With other genotype" ) , col = c(rgb(0.3,0.1,0.4,0.6) , rgb(0.3,0.5,0.4,0.6) , rgb(0.3,0.9,0.4,0.6) , rgb(0.3,0.9,0.4,0.6)) , bty = "n", pch=20 , pt.cex = 2, cex = 0.8, horiz = FALSE, inset = c(0.05, 0.05))
# -*- coding: utf-8 -*- """ Created on Thu Dec 17 22:12:50 2020 @author: Administrator """ import matplotlib.pyplot as plt import pandas as pd import numpy as np labels = ['TE','PTE','SE'] y1 = [0.885,0.952,0.929] y2 = [0.909,0.978,0.930] y3= [0.921,0.988,0.932] fig,ax = plt.subplots(1,1,figsize=(8,4.5)) x = np.arange(len(labels)) total_width, n = 0.8, 3 width = total_width / n x = x - (total_width - width) / 2 label_font = { 'weight':'bold', 'size':14, 'family':'simsun' } colors = ['#9999FF','#58C9B9','#CC33CC','#D1B6E1','#99FF99','#C0C0C0'] rects1 = ax.bar(x, y1, width, label='2017年',ec='k',color='#DDDDDD',lw=.8, hatch='xx') rects2 = ax.bar(x + width, y2, width, label='2018年',ec='k',color='#DDDDDD', lw=.8,hatch='') rects3 = ax.bar(x + width * 2, y3, width, label='2019年',ec='k',color='#DDDDDD', lw=.8,hatch='//') # tick_params参数刻度线样式设置 # ax.tick_params(axis=‘x’, tickdir=‘in’, labelrotation=20)参数详解 # axis : 可选{‘x’, ‘y’, ‘both’} ,选择对哪个轴操作,默认是’both’ # which : 可选{‘major’, ‘minor’, ‘both’} 选择对主or副坐标轴进行操作 # direction/tickdir : 可选{‘in’, ‘out’, ‘inout’}刻度线的方向 # color : 刻度线的颜色,我一般用16进制字符串表示,eg:’#EE6363’ # width : float, 刻度线的宽度 # size/length : float, 刻度线的长度 # pad : float, 刻度线与刻度值之间的距离 # labelsize : float/str, 刻度值字体大小 # labelcolor : 刻度值颜色 # colors : 同时设置刻度线和刻度值的颜色 # bottom, top, left, right : bool, 分别表示上下左右四边,是否显示刻度线,True为显示 ax.tick_params(which='major',direction='in',length=5,width=1.5,labelsize=11,bottom=False) ax.tick_params(axis='x',labelsize=11,bottom=False,labelrotation=0) ax.set_xticks(range(len(labels))) # ax.set_yticks([0,0.2,0.4,0.6,0.8,1]) ax.set_ylim(ymin = 0,ymax = 1.1) # 0 - 1800 ,200为一个间距 ax.set_yticks(np.arange(0,1.1,0.2)) ax.set_ylabel('(效率值)',fontdict=label_font) ax.set_xticklabels(labels,fontdict=label_font) ax.legend(prop =label_font,loc='center', bbox_to_anchor=(0.5,1),ncol=4,frameon=False,shadow=False) ''' # 设置有边框和头部边框颜色为空right、top、bottom、left ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') ''' ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) # # 上下左右边框线宽 # linewidth = 2 # for spine in ['top','bottom','left','right']: # ax.spines[spine].set_linewidth(linewidth) # Add some text for labels, title and custom x-axis tick labels, etc. # def autolabel(rects): # for rect in rects: # height = rect.get_height() # ax.annotate('{}'.format(height), # xy=(rect.get_x() + rect.get_width() / 2, height), # xytext=(0, 3), # textcoords="offset points", # ha='center', va='bottom') # autolabel(rects1) # autolabel(rects2) # autolabel(rects3) # fig.tight_layout() plt.savefig(r'C:\Users\Administrator\Desktop\p1.png',dpi=500)
https://blog.csdn.net/luohenyj/article/details/108348697
from palettable.colorbrewer.qualitative import Pastel1_7 import matplotlib.pyplot as plt import numpy as np plt.rcParams['font.sans-serif']=['KaiTi'] plt.rcParams['axes.unicode_minus']=False fig, ax = plt.subplots(figsize=(6, 3), subplot_kw=dict(aspect="equal")) recipe = ["标签1", "标签2", "标签3", "标签4", "标签5", "标签6"] data = [225, 90, 50, 60, 100, 25] wedges, texts = ax.pie(data,colors=Pastel1_7.hex_colors,wedgeprops=dict(width=0.5), startangle=-40) # 每一类别说明框 # boxstyle框的类型,fc填充颜色,ec边框颜色,lw边框宽度 bbox_props = dict(boxstyle="square,pad=0.3", fc='white', ec="black", lw=0.72) # 设置框引出方式 kw = dict(arrowprops=dict(arrowstyle="-"), bbox=bbox_props, zorder=0, va="center") # 添加标签 for i, p in enumerate(wedges): ang = (p.theta2 - p.theta1)/2. + p.theta1 y = np.sin(np.deg2rad(ang)) x = np.cos(np.deg2rad(ang)) # 设置方向 horizontalalignment = {-1: "right", 1: "left"}[int(np.sign(x))] connectionstyle = "angle,angleA=0,angleB={}".format(ang) kw["arrowprops"].update({"connectionstyle": connectionstyle}) # 设置标注 ax.annotate(recipe[i], xy=(x, y), xytext=(1.35*np.sign(x), 1.4*y), horizontalalignment=horizontalalignment,color='black', **kw) ax.set_title("Matplotlib bakery: A donut") plt.show();
import matplotlib.pyplot as plt
group_names=['groupA', 'groupB', 'groupC']
group_size=[12,11,30]
subgroup_names=['A.1', 'A.2', 'A.3', 'B.1', 'B.2', 'C.1', 'C.2', 'C.3', 'C.4', 'C.5']
subgroup_size=[4,3,5,6,5,10,5,5,4,6]
a, b, c=[plt.cm.Blues, plt.cm.Reds, plt.cm.Greens]
fig, ax = plt.subplots()
ax.axis('equal')
mypie, _ = ax.pie(group_size, radius=1.3, labels=group_names, colors=[a(0.6), b(0.6), c(0.6)],wedgeprops=dict(width=0.3, edgecolor='white'));
mypie2, _ = ax.pie(subgroup_size, radius=1.3-0.3, labels=subgroup_names, labeldistance=0.7, colors=[a(0.5), a(0.4), a(0.3), b(0.5), b(0.4), c(0.6), c(0.5), c(0.4), c(0.3), c(0.2)],wedgeprops=dict(width=0.4, edgecolor='white'));
plt.margins(0,0);
import matplotlib.pyplot as plt
names='groupA', 'groupB', 'groupC', 'groupD',
size=[12,11,3,30]
from palettable.colorbrewer.qualitative import Pastel1_7
plt.pie(size, labels=names, colors=Pastel1_7.hex_colors,wedgeprops=dict(width=0.3, edgecolor='w'))
plt.axis('equal')
plt.show();
https://zhuanlan.zhihu.com/p/140945416
import pandas as pd from pyecharts import options as opts from pyecharts.charts import Pie from pyecharts.globals import ThemeType from pyecharts.commons.utils import JsCode b = ["a","b"] c = [50,80] d = [54,90] df_pie = pd.DataFrame({'类别':b,'值1':c,'值2':d}) fn = """ function(params) { if(params.name == '其他') return '\\n\\n\\n' + params.name + ' : ' + params.value + '%'; return params.name + ' : ' + params.value + '%'; } """ def new_label_opts(): return opts.LabelOpts(formatter=JsCode(fn), position="center") c = ( Pie(init_opts=opts.InitOpts(width="800px", height="450px",theme = ThemeType.VINTAGE )) .add( "值1", df_pie[["类别","值1"]].values.tolist(), center=["28%", "50%"], radius=[90, 110], label_opts=new_label_opts(), ) .add( "死亡数", df_pie[["类别","值2"]].values.tolist(), center=["68%", "50%"], radius=[90, 110], label_opts=new_label_opts(), ) .set_global_opts( title_opts=opts.TitleOpts(title="Python双圆环图)",pos_bottom = "85%", pos_right = "39%"), legend_opts=opts.LegendOpts( is_show=1,type_="scroll", pos_top="2%", pos_left="43%", orient="horizontal" ), toolbox_opts=opts.ToolboxOpts( # 是否显示该工具 is_show=True, ), ) .set_series_opts(label_opts = opts.LabelOpts(is_show=1,formatter="{a}:\n{b}:{c}\n占比:{d}%") ) .render("mutiple_pie.html") )
https://zhuanlan.zhihu.com/p/62748885
def getFrinendSex():#获取好友性别
auto_login(hotReload=True)
a=get_friends()
ls=[]
for i in a:
ls.append(i['Sex'])#性别字典键
a=['男','女','未知']
b=dict(zip(a,Counter(ls).values()))#counter统计列表中代表性别的元素(0,1,2)的个数,并替换成指定的列表a
shareN=[v/sum(b.values()) for v in b.values()]#计算各类别占比,形成列表
plt.figure(figsize=(6.4,6.4),facecolor='b')
plt.pie(x=shareN,radius=1.5,labels=a,pctdistance=1.2,labeldistance=0.8,colors=['cornflowerblue','violet','lightgreen'])
plt.pie(x=[1],radius=0.9,colors='w')#叠加一个空白的Piel图,形成环形
plt.rcParams['font.sans-serif'] = ['SimHei']#中文标签需要这个字体才能显示
plt.text(-0.7,-0.1,'微信好友性别比例',fontsize=24)#向中间空白填充此词组
plt.savefig('RawenWechatFriendSex.jpg',dpi=100)
内嵌环形饼图
https://blog.csdn.net/bubid/article/details/108095414?utm_medium=distribute.wap_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-7.wap_blog_relevant_pic&depth_1-utm_source=distribute.wap_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-7.wap_blog_relevant_pic
有道:1
有道:2
当是一个二维表时,可以做堆叠柱形图
有道:3
#提取会员不同性别人数
male = pd.value_counts(data['GENDER'])['男']
female = pd.value_counts(data['GENDER'])['女']
#绘制会员性别比例饼图
fig = plt.figure(figsize=(7, 4)) #设置画布大小
plt.pie([male, female], labels=['男', '女'], colors=['lightskyblue', 'lightcoral'], autopct='%1.1f%%')
plt.title('会员性别比例')
plt.show()
plt.close()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。