赞
踩
一、写在前面
(1)Data-efficient Image Transformers
Data-efficient Image Transformers (DeiT)是一种用于图像分类的新型模型,由Facebook AI在2020年底提出。这种方法基于视觉Transformer,通过训练策略的改进,使得模型能在少量数据下达到更高的性能。
在许多情况下,Transformer模型需要大量的数据才能得到好的结果。然而,这在某些场景下是不可能的,例如在只有少量标注数据的情况下。DeiT方法通过在训练过程中使用知识蒸馏,解决了这个问题。知识蒸馏是一种让小型模型学习大型模型行为的技术。
DeiT中的关键技术之一是使用学生模型预测教师模型的类别分布,而不仅仅是硬标签(原始数据集中的类别标签)。这样做的好处是,学生模型可以从教师模型的软标签(类别概率分布)中学习更多的信息。另外,DeiT还引入了一种新的训练方法,称为“硬标签蒸馏”,这种方法更进一步提高了模型的性能。通过这种方法,即使在ImageNet这样的大规模数据集上,DeiT也可以与更复杂的卷积神经网络(如ResNet和EfficientNet)相媲美或者超越,同时还使用了更少的计算资源。
(2)Data-efficient Image Transformers的预训练版本
本文继续使用Facebook的高级深度学习框架PyTorchImageModels (timm)。该库提供了多种预训练的模型,太多了,我还是给网址吧:
https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/deit.py
从第155行到第249行都是:
比如“deit_tiny_patch16_224”:
"deit": 这是模型类型的缩写,代表 "Data-efficient Image Transformers"。
"tiny": 这个词说明了模型的大小。在此情况下,"tiny"意味着这是一个更小、计算成本更低的模型版本。相对的,还有"small","base"等不同规模的模型。
"patch16": 这是指在模型的输入阶段,原始图像被分割成大小为16x16像素的小方块(也被称为patch)进行处理。
"224": 这是指模型接受的输入图像的尺寸是224x224像素。这是在计算机视觉领域常用的图像尺寸。
二、Data-efficient Image Transformers迁移学习代码实战
我们继续胸片的数据集:肺结核病人和健康人的胸片的识别。其中,肺结核病人700张,健康人900张,分别存入单独的文件夹中。
(a)导入包
- import copy
- import torch
- import torchvision
- import torchvision.transforms as transforms
- from torchvision import models
- from torch.utils.data import DataLoader
- from torch import optim, nn
- from torch.optim import lr_scheduler
- import os
- import matplotlib.pyplot as plt
- import warnings
- import numpy as np
-
- warnings.filterwarnings("ignore")
- plt.rcParams['font.sans-serif'] = ['SimHei']
- plt.rcParams['axes.unicode_minus'] = False
-
- # 设置GPU
- device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
(b)导入数据集
- import torch
- from torchvision import datasets, transforms
- import os
-
- # 数据集路径
- data_dir = "./MTB"
-
- # 图像的大小
- img_height = 100
- img_width = 100
-
- # 数据预处理
- data_transforms = {
- 'train': transforms.Compose([
- transforms.RandomResizedCrop(img_height),
- transforms.RandomHorizontalFlip(),
- transforms.RandomVerticalFlip(),
- transforms.RandomRotation(0.2),
- transforms.ToTensor(),
- transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
- ]),
- 'val': transforms.Compose([
- transforms.Resize((img_height, img_width)),
- transforms.ToTensor(),
- transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
- ]),
- }
-
- # 加载数据集
- full_dataset = datasets.ImageFolder(data_dir)
-
- # 获取数据集的大小
- full_size = len(full_dataset)
- train_size = int(0.7 * full_size) # 假设训练集占80%
- val_size = full_size - train_size # 验证集的大小
-
- # 随机分割数据集
- torch.manual_seed(0) # 设置随机种子以确保结果可重复
- train_dataset, val_dataset = torch.utils.data.random_split(full_dataset, [train_size, val_size])
-
- # 将数据增强应用到训练集
- train_dataset.dataset.transform = data_transforms['train']
-
- # 创建数据加载器
- batch_size = 32
- train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4)
- val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size, shuffle=True, num_workers=4)
-
- dataloaders = {'train': train_dataloader, 'val': val_dataloader}
- dataset_sizes = {'train': len(train_dataset), 'val': len(val_dataset)}
- class_names = full_dataset.classes
(c)导入Data-efficient Image Transformers
- # 导入所需的库
- import torch.nn as nn
- import timm
-
- # 定义Data-efficient Image Transformers模型
- model = timm.create_model('deit_base_patch16_224', pretrained=True) # 你可以选择适合你需求的DeiT版本,这里以deit_base_patch16_224为例
- num_ftrs = model.head.in_features
-
- # 根据分类任务修改最后一层
- model.head = nn.Linear(num_ftrs, len(class_names))
-
- # 将模型移至指定设备
- model = model.to(device)
-
- # 打印模型摘要
- print(model)
(d)编译模型
- # 定义损失函数
- criterion = nn.CrossEntropyLoss()
-
- # 定义优化器
- optimizer = optim.Adam(model.parameters())
-
- # 定义学习率调度器
- exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)
-
- # 开始训练模型
- num_epochs = 10
- best_model_wts = copy.deepcopy(model.state_dict())
- best_acc = 0.0
-
- # 初始化记录器
- train_loss_history = []
- train_acc_history = []
- val_loss_history = []
- val_acc_history = []
-
- for epoch in range(num_epochs):
- print('Epoch {}/{}'.format(epoch, num_epochs - 1))
- print('-' * 10)
-
- # 每个epoch都有一个训练和验证阶段
- for phase in ['train', 'val']:
- if phase == 'train':
- model.train() # Set model to training mode
- else:
- model.eval() # Set model to evaluate mode
-
- running_loss = 0.0
- running_corrects = 0
-
- # 遍历数据
- for inputs, labels in dataloaders[phase]:
- inputs = inputs.to(device)
- labels = labels.to(device)
-
- # 零参数梯度
- optimizer.zero_grad()
-
- # 前向
- with torch.set_grad_enabled(phase == 'train'):
- outputs = model(inputs)
- _, preds = torch.max(outputs, 1)
- loss = criterion(outputs, labels)
-
- # 只在训练模式下进行反向和优化
- if phase == 'train':
- loss.backward()
- optimizer.step()
-
- # 统计
- running_loss += loss.item() * inputs.size(0)
- running_corrects += torch.sum(preds == labels.data)
-
- epoch_loss = running_loss / dataset_sizes[phase]
- epoch_acc = (running_corrects.double() / dataset_sizes[phase]).item()
-
- # 记录每个epoch的loss和accuracy
- if phase == 'train':
- train_loss_history.append(epoch_loss)
- train_acc_history.append(epoch_acc)
- else:
- val_loss_history.append(epoch_loss)
- val_acc_history.append(epoch_acc)
-
- print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
-
- # 深拷贝模型
- if phase == 'val' and epoch_acc > best_acc:
- best_acc = epoch_acc
- best_model_wts = copy.deepcopy(model.state_dict())
-
- print()
-
- print('Best val Acc: {:4f}'.format(best_acc))
(e)Accuracy和Loss可视化
- epoch = range(1, len(train_loss_history)+1)
-
- fig, ax = plt.subplots(1, 2, figsize=(10,4))
- ax[0].plot(epoch, train_loss_history, label='Train loss')
- ax[0].plot(epoch, val_loss_history, label='Validation loss')
- ax[0].set_xlabel('Epochs')
- ax[0].set_ylabel('Loss')
- ax[0].legend()
-
- ax[1].plot(epoch, train_acc_history, label='Train acc')
- ax[1].plot(epoch, val_acc_history, label='Validation acc')
- ax[1].set_xlabel('Epochs')
- ax[1].set_ylabel('Accuracy')
- ax[1].legend()
-
- #plt.savefig("loss-acc.pdf", dpi=300,format="pdf")
观察模型训练情况:
蓝色为训练集,橙色为验证集。
(f)混淆矩阵可视化以及模型参数
- from sklearn.metrics import classification_report, confusion_matrix
- import math
- import pandas as pd
- import numpy as np
- import seaborn as sns
- from matplotlib.pyplot import imshow
-
- # 定义一个绘制混淆矩阵图的函数
- def plot_cm(labels, predictions):
-
- # 生成混淆矩阵
- conf_numpy = confusion_matrix(labels, predictions)
- # 将矩阵转化为 DataFrame
- conf_df = pd.DataFrame(conf_numpy, index=class_names ,columns=class_names)
-
- plt.figure(figsize=(8,7))
-
- sns.heatmap(conf_df, annot=True, fmt="d", cmap="BuPu")
-
- plt.title('Confusion matrix',fontsize=15)
- plt.ylabel('Actual value',fontsize=14)
- plt.xlabel('Predictive value',fontsize=14)
-
- def evaluate_model(model, dataloader, device):
- model.eval() # 设置模型为评估模式
- true_labels = []
- pred_labels = []
- # 遍历数据
- for inputs, labels in dataloader:
- inputs = inputs.to(device)
- labels = labels.to(device)
-
- # 前向
- with torch.no_grad():
- outputs = model(inputs)
- _, preds = torch.max(outputs, 1)
-
- true_labels.extend(labels.cpu().numpy())
- pred_labels.extend(preds.cpu().numpy())
-
- return true_labels, pred_labels
-
- # 获取预测和真实标签
- true_labels, pred_labels = evaluate_model(model, dataloaders['val'], device)
-
- # 计算混淆矩阵
- cm_val = confusion_matrix(true_labels, pred_labels)
- a_val = cm_val[0,0]
- b_val = cm_val[0,1]
- c_val = cm_val[1,0]
- d_val = cm_val[1,1]
-
- # 计算各种性能指标
- acc_val = (a_val+d_val)/(a_val+b_val+c_val+d_val) # 准确率
- error_rate_val = 1 - acc_val # 错误率
- sen_val = d_val/(d_val+c_val) # 灵敏度
- sep_val = a_val/(a_val+b_val) # 特异度
- precision_val = d_val/(b_val+d_val) # 精确度
- F1_val = (2*precision_val*sen_val)/(precision_val+sen_val) # F1值
- MCC_val = (d_val*a_val-b_val*c_val) / (np.sqrt((d_val+b_val)*(d_val+c_val)*(a_val+b_val)*(a_val+c_val))) # 马修斯相关系数
-
- # 打印出性能指标
- print("验证集的灵敏度为:", sen_val,
- "验证集的特异度为:", sep_val,
- "验证集的准确率为:", acc_val,
- "验证集的错误率为:", error_rate_val,
- "验证集的精确度为:", precision_val,
- "验证集的F1为:", F1_val,
- "验证集的MCC为:", MCC_val)
-
- # 绘制混淆矩阵
- plot_cm(true_labels, pred_labels)
-
-
- # 获取预测和真实标签
- train_true_labels, train_pred_labels = evaluate_model(model, dataloaders['train'], device)
- # 计算混淆矩阵
- cm_train = confusion_matrix(train_true_labels, train_pred_labels)
- a_train = cm_train[0,0]
- b_train = cm_train[0,1]
- c_train = cm_train[1,0]
- d_train = cm_train[1,1]
- acc_train = (a_train+d_train)/(a_train+b_train+c_train+d_train)
- error_rate_train = 1 - acc_train
- sen_train = d_train/(d_train+c_train)
- sep_train = a_train/(a_train+b_train)
- precision_train = d_train/(b_train+d_train)
- F1_train = (2*precision_train*sen_train)/(precision_train+sen_train)
- MCC_train = (d_train*a_train-b_train*c_train) / (math.sqrt((d_train+b_train)*(d_train+c_train)*(a_train+b_train)*(a_train+c_train)))
- print("训练集的灵敏度为:",sen_train,
- "训练集的特异度为:",sep_train,
- "训练集的准确率为:",acc_train,
- "训练集的错误率为:",error_rate_train,
- "训练集的精确度为:",precision_train,
- "训练集的F1为:",F1_train,
- "训练集的MCC为:",MCC_train)
-
- # 绘制混淆矩阵
- plot_cm(train_true_labels, train_pred_labels)
效果不错:
(g)AUC曲线绘制
- from sklearn import metrics
- import numpy as np
- import matplotlib.pyplot as plt
- from matplotlib.pyplot import imshow
- from sklearn.metrics import classification_report, confusion_matrix
- import seaborn as sns
- import pandas as pd
- import math
-
- def plot_roc(name, labels, predictions, **kwargs):
- fp, tp, _ = metrics.roc_curve(labels, predictions)
-
- plt.plot(fp, tp, label=name, linewidth=2, **kwargs)
- plt.plot([0, 1], [0, 1], color='orange', linestyle='--')
- plt.xlabel('False positives rate')
- plt.ylabel('True positives rate')
- ax = plt.gca()
- ax.set_aspect('equal')
-
-
- # 确保模型处于评估模式
- model.eval()
-
- train_ds = dataloaders['train']
- val_ds = dataloaders['val']
-
- val_pre_auc = []
- val_label_auc = []
-
- for images, labels in val_ds:
- for image, label in zip(images, labels):
- img_array = image.unsqueeze(0).to(device) # 在第0维增加一个维度并将图像转移到适当的设备上
- prediction_auc = model(img_array) # 使用模型进行预测
- val_pre_auc.append(prediction_auc.detach().cpu().numpy()[:,1])
- val_label_auc.append(label.item()) # 使用Tensor.item()获取Tensor的值
- auc_score_val = metrics.roc_auc_score(val_label_auc, val_pre_auc)
-
-
- train_pre_auc = []
- train_label_auc = []
-
- for images, labels in train_ds:
- for image, label in zip(images, labels):
- img_array_train = image.unsqueeze(0).to(device)
- prediction_auc = model(img_array_train)
- train_pre_auc.append(prediction_auc.detach().cpu().numpy()[:,1]) # 输出概率而不是标签!
- train_label_auc.append(label.item())
- auc_score_train = metrics.roc_auc_score(train_label_auc, train_pre_auc)
-
- plot_roc('validation AUC: {0:.4f}'.format(auc_score_val), val_label_auc , val_pre_auc , color="red", linestyle='--')
- plot_roc('training AUC: {0:.4f}'.format(auc_score_train), train_label_auc, train_pre_auc, color="blue", linestyle='--')
- plt.legend(loc='lower right')
- #plt.savefig("roc.pdf", dpi=300,format="pdf")
-
- print("训练集的AUC值为:",auc_score_train, "验证集的AUC值为:",auc_score_val)
ROC曲线如下:
很优秀的ROC曲线!
三、写在最后
运算量和消耗的计算资源还是大,在这个数据集上跑出来的性能比ViT模型要好一些,说明优化策略还是起到效果的。
四、数据
链接:https://pan.baidu.com/s/15vSVhz1rQBtqNkNp2GQyVw?pwd=x3jf
提取码:x3jf
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。