当前位置:   article > 正文

【大数据&AI人工智能】图文详解 ChatGPT、文心一言等大模型背后的 Transformer 算法原理_文心大模型的工作原理

文心大模型的工作原理

论文 Attention is All You Need 中推荐了 Transformer

a52e5670ecb94fd9912cfda04606bdc8.png

 

 

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best res

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/凡人多烦事01/article/detail/374625
推荐阅读
相关标签
  

闽ICP备14008679号