当前位置:   article > 正文

YOLOv8最新改进系列:YOLOv8融合SwinTransformer模块,有效提升小目标检测效果!_yolov8小目标优化

yolov8小目标优化

YOLOv8最新改进系列

Transformer提出的论文戳这

详细的改进教程以及源码,戳这!戳这!!戳这!!!B站:AI学术叫叫兽 源码在相簿的链接中,动态中也有链接,感谢支持!祝科研遥遥领先!

截止到发稿,B站YOLOv8最新改进系列的源码包已更新了20种!
AI学术叫叫兽er在这!家人们,给我遥遥领先!!!

AI学术叫叫兽er在这!家人们,给我遥遥领先!!!


一、swin transformer概述

在这里插入图片描述

上图是Swin Transformer的整体结构,非常像卷积的层级结构,分辨率每层变成一半,而通道数变成两倍。首先Patch Partition,就是VIT中等分成小块的操作;然后分成4个stage,每个stage中包括两个部分,分别是patch Merging(第一个块是线性层) 和Swin Transformer Block。patch Merging是一个类似于池化的操作,池化会损失信息,patch Merging不会。右图是Swin Transformer Block结构,和transformer block基本类似,不同的地方在多头自注意力MSA换成了窗口多头自注意力W-MSA和移动窗口多头自注意力SW-MSA,右图紫框。详细的内容可以去作者提出的文章了解。本文主要进行YOLOv8的优化。


AI学术叫叫兽er在这!家人们,给我遥遥领先!!!

二、YOLOv8融合SwinTransformer模块

2.1 修改YAML文件

# Ultralytics YOLO 
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/凡人多烦事01/article/detail/439911
推荐阅读
相关标签