当前位置:   article > 正文

【跟马少平老师学AI】-【神经网络是怎么实现的】(六)过拟合问题

【跟马少平老师学AI】-【神经网络是怎么实现的】(六)过拟合问题

一句话归纳:

1)过拟合问题

  • 图中的点为样本
  • 直线欠拟合
  • 曲线2过拟合

2)迭代次数与拟合情况:

  • 训练次数过多可能导致过拟合。

3)正则化项法弱化过拟后问题:

  • 加正则项,在最小化损失函数时抑制了个别参数影响过大导致的过拟合。

4)舍弃法弱化过拟合

  • 通过训练多个简化的神经网络(丢弃部分参数)弱化过拟合。
  • 又保持使用过所有神经元。

5)数据增强法:

  • 训练数据足够多(样本多样性)。
  • 通过旋转、截取、缩放等方法获取数据。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/凡人多烦事01/article/detail/531402
推荐阅读
相关标签
  

闽ICP备14008679号