赞
踩
事实表,顾名思义,是用来存储事实
的表,这些事实
通常是指可以量化的业务指标,如销售额、订单数量等。事实表的特点是有大量的行,每行代表一个业务事件的度量。
换句话说就是你要关注事物的内容,事实表就像故事中的主角,它包含我们感兴趣的主要信息(如销售金额、订购数量、利润以及它们发生的时间和地点等)。事实表中的每一行数据都代表了某种业务活动,就好比故事中的一个关键事件一样。
比如,一张记录了公司所有业务交易的清单。每一条记录都是一个事实,比如一次销售或一笔支出。
举个例子,假设我们有一个简单的销售事实表,它记录了每次销售的金额和日期:
CREATE TABLE Sales_Fact (
SaleID INT PRIMARY KEY,
ProductID INT,
SaleAmount DECIMAL(10,2),
SaleDate DATE
);
在这个例子中,SaleID
是每条销售记录的唯一标识,ProductID
与维度表相关联,SaleAmount
是销售金额,SaleDate
是销售日期。
其他详细内容可以看:数据仓库核心:揭秘事实表与维度表的角色与区别
事实表是数据仓库中的核心,它与维度表相对应,存储了业务过程中量化的数据,也就是我们通常所说的度量值(measures
)。事实表通常包含以下主要部分:
“粒度”描述了事实表中每条记录所捕捉到的业务细节的深度。它可以通过两个维度来衡量:首先是维度属性的组合,它们决定了数据条目的详细程度;其次是数据条目所代表的具体业务含义。
如果我们选择“产品维度”的“SKU”作为粒度,那么我们的数据条目将非常详细,因为每个SKU都是独特的,能够反映单个商品的销售情况。例如,一个数据条目可能表示“在2024年6月10日,北京地区,某款智能手机的销售额为3000元”。
事实表中的数据,作为衡量业务流程的量度,通常以整数或小数形式出现,并分为三种可加性类型:
一个销售数据的事实表,记录了每笔交易的销售额。如果我们要计算总销售额,我们可以将所有交易的销售额相加:
2024年1月1日,北京,销售额100元。
2024年1月1日,上海,销售额200元。
2024年1月2日,北京,销售额150元。
分析库存数据,库存数量可以按地点或商品类别进行汇总,但按时间维度累加就没有意义。例如:
2024年1月1日,北京,库存数量50件。
2024年1月1日,上海,库存数量30件。
我们可以计算北京和上海的总库存数量:80件。但如果我们尝试将1月份每天的库存数量累加,这就没有意义,因为库存数量是随时间变化的,每天的库存数量并不是独立的,而是相互关联的。
记录了每个订单的利润率(销售额减去成本后的百分比),这个度量就是不可加的。例如:
订单1的利润率是20%。
订单2的利润率是15%。
我们不能简单地将这两个利润率相加得到一个总体的利润率。相反,如果我们想要得到平均利润率,我们需要先计算每个订单的实际利润,然后将这些利润相加,最后除以订单的总数。例如:
订单1的销售额是100元,成本是80元,利润是20元。
订单2的销售额是150元,成本是130元,利润是20元。
总利润是40元,订单总数是2,所以平均利润率是 40/(100+150)=16.67%
事实表设计的核心目标是全面捕捉业务流程的每一个细节。在设计时,我们应该无一遗漏地纳入所有与业务过程紧密相关的量化事实,哪怕这可能导致数据的轻微冗余。由于事实数据通常以数字形式存储,其对存储空间的影响相对较小。
案例:在一家零售店,事实表不仅记录了每笔交易的销售额,还记录了交易时间、顾客ID和购买的商品种类。即使某些信息如交易时间在某些分析中不是必需的,它的包含仍然为更全面的业务分析提供了可能。
在挑选事实时,我们必须严格筛选,确保只包含那些直接与当前业务过程相关的事实。这有助于保持数据的清晰性和分析的准确性。
案例:在一个电商平台的订单处理过程中,事实表应记录订单号、商品详情和顾客信息,而支付金额则属于支付过程的事实,应从订单事实表中排除。
面对不可直接汇总的度量,我们应通过创造性地拆分,将其转化为可加的组成部分,从而扩展分析的可能性。
案例:网站的用户访问数据中,如果记录了每个页面的浏览次数和独立访客数,我们可以将“购买率”这一不可加事实拆分为“购买人数”和“浏览人数”,使得原本难以聚合的数据变得可以分析。
在设计事实表时,粒度的选择至关重要。我们应从最细的原子粒度开始设计,以满足当前和未来可能的用户需求。
案例:销售事实表可能以单个交易为粒度,记录每一次购买的详细信息。而在汇总销售数据时,我们可以按商品、时间或地区等维度进行聚合。
在一张事实表中,应避免混合不同粒度的事实,以防止汇总时出现重复计算的问题。
案例:如果事实表同时记录了单个订单和包含多个子订单的大订单,那么在汇总支付金额时,大订单中的子订单金额可能会被重复计算。
小订单ID | 大订单ID | 小订单付款金额 | 小订单购买数量 | 大订单付款金额 |
---|---|---|---|---|
L1001 | B1 | 100 | 1 | 300 |
L1002 | B1 | 200 | 1 | 300 |
L1003 | B2 | 150 | 1 | 200 |
L1004 | B2 | 50 | 1 | 200 |
在事实表中,所有度量单位应保持一致,无论是货币单位还是数量单位,这有助于简化分析过程并避免混淆。
案例:在财务事实表中,所有的金额数据都应该统一为“元”或“分”,确保在进行财务分析时的一致性和准确性。
由于null值在某些查询中无法参与计算,我们应事先设定规则,将null值替换为零或其他适当的默认值。
案例:如果销售事实表中的“退货数量”字段出现null,我们可以将其默认填充为0,以避免在计算总销售数量时出现错误。
通过将常用维度属性直接嵌入到事实表中,我们可以减少对维度表的依赖,提高查询效率。
案例:在销售事实表中,如果将“商品名称”作为退化维度直接包含,那么在进行商品销售分析时,就无需额外关联商品维度表,从而加快查询速度并减少I/O操作。
在构建数据仓库的事实表之前,我们必须首先深入挖掘并明确业务的核心需求,以及确定事实表所扮演的角色。这一步骤要求我们对业务流程进行全面的需求分析,洞察整个业务生命周期的每一个关键步骤,并且精准筛选出与我们需求紧密相连的业务活动。
接下来,我们必须精确地声明事实表的粒度,力求达到原子级别的细节,以便捕捉业务活动中最细微的变化。
在粒度确定之后,我们也随之锁定了事实表的主键。基于此,我们可以识别出与这些主键相关联的维度组合,以及它们所包含的维度字段。
我们还需要明确在这个业务过程中所度量的关键指标是什么,并确保将不可加的度量进行适当的拆分,以便于进行有效的数据聚合。
此外,为了优化查询性能和减少数据冗余,我们应该尽可能地将维度属性退化并直接嵌入到事实表中,这样不仅提升了数据的可用性,也简化了数据模型。
案例背景:
假设我们正在为一家电子商务公司设计一个订单事实表,该公司希望分析销售数据以优化库存管理和促销策略。
步骤1:确定业务需求和事实表的类型
步骤2:进行详细的需求分析
步骤3:声明粒度
步骤4:确定维度
步骤5:确定事实
步骤6:冗余维度
CREATE TABLE IF NOT EXISTS order_fact_table ( order_id INT COMMENT '唯一标识每个订单的ID', customer_id INT COMMENT '下单顾客的ID', order_date DATE COMMENT '订单的日期', product_id INT COMMENT '订单中商品的ID', quantity INT COMMENT '订单中商品的数量', unit_price DECIMAL(10, 2) COMMENT '商品的单价,保留两位小数,确保金额的精确度', total_amount DECIMAL(15, 2) COMMENT '订单的总金额,保留两位小数,适用于大金额订单', return_quantity INT COMMENT '订单的退货数量,默认为0,表示没有退货', promotion_id INT COMMENT '订单参与的促销活动ID,如果有的话', customer_region STRING COMMENT '顾客所属的地区,使用字符串存储' ) COMMENT '订单事实表,存储订单相关的详细数据' ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' LINES TERMINATED BY '\n' STORED AS TEXTFILE;
单事务事实表结构简单,易于管理,适用于单一且独立的业务记录。多事务事实表则适用于复杂的业务场景,能够记录多个相关联的事务,但设计和理解上更为复杂。
特性 | 单事务事实表 | 多事务事实表 |
---|---|---|
业务过程 | 一个 | 多个 |
粒度 | 相互间不相关 | 相同粒度 |
维度 | 相互间不相关 | 一致 |
事实 | 只取当前业务过程中的事实 | 保留多个业务过程中的事实,非当前业务过程中的事实需要置零处理 |
理解程度 | 易于理解,不会混淆 | 难以理解,需要通过标签来限定 |
计算存储成本 | 较少,不同业务过程融合到一起,降低了存储计算量,但是非当前业务过程的度量存在大量零值 | 较多,每个业务过程都需要计算,存储一次 |
事务事实表适用于记录具体事务的瞬间数据,周期快照事实表用于定期捕获数据状态,而累积快照事实表则追踪业务过程的完整历史,提供连续的数据视图。每种表根据其更新和加载机制,服务于不同的数据分析需求。
特性 | 事务事实表 | 周期快照事实表 | 累积快照事实表 |
---|---|---|---|
时期/时间点 | 离散事务时间点 | 以有规律的、可预测的时期间隔产生快照 | 用于时间跨度不确定的不断变化的工作流 |
日期维度 | 事务日期 | 快照日期 | 相关业务过程涉及的多个日期 |
粒度 | 每行代表一个事务 | 每行代表某时间周期的一个实体 | 每行代表一个实体的生命周期 |
事实 | 事务事实 | 相关业务过程事实和时间间隔事实 | 事务事实、累积事实 |
事实表加载 | 插入 | 插入 | 插入与更新 |
事实表更新 | 不更新 | 不更新 | 业务过程变更时更新 |
在本章,我们细致地构建了对事实表这一数据仓库核心元素的理解。事实表记录了企业的关键业务数据,每条记录都是业务活动的直接反映。
我们首先明确了事实表的基本功能,它集中存储了业务度量和事实,是数据分析的基础。然后,我们学习了如何根据业务需求设计事实表,挑选合适的度量,并确保通过维度键与维度表的连接,为数据分析提供必要的上下文。
我们讨论了事实表的粒度问题,这是决定我们分析细节深度的关键。我们还区分了单事务和多事务事实表,并探讨了它们在不同业务场景下的应用。
最后,我们掌握了一些高级设计原则,包括处理null值的策略、避免数据冗余的方法,以及通过退化维度来提高查询性能的技巧。这些原则有助于确保事实表的准确性和效率,支持有效的数据分析和决策制定。
随着本章的结束,希望你对事实表的设计和应用有了更清晰的认识,能够更有效地利用这一工具来挖掘数据的潜力,为企业带来价值。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。