赞
踩
AI是一个广泛的领域,涵盖了模拟和扩展人类智能的多种理论和技术;而大模型是AI领域中的一种具体技术,特别是在自然语言处理(NLP)方面取得了显著进展的深度学习模型。大模型通常指的是具有大量参数的深度学习模型,它们通过在大规模数据集上进行训练,能够学到丰富的数据表示和模式,从而在各种任务上表现出色,如文本生成、语言理解、图像识别等。
大模型,是指在人工智能领域,特别实在自然语言处理和机器学习中,拥有大量参数的深度学习模型。
这些模型通过在大规模数据集上进行训练,能够学到丰富的数据表示和模式,从而在各种任务上表现出色,如文本生成,语言理解,图像识别等。
大模型是具有大量参数和复杂结构的模型,这些模型通常具数十亿甚至数万亿个参数,能够处理大规模的数据和复杂的任务。
通常使用深度学习技术,如深度神经网络,可以从数据中学习并提取特征来执行各种任务。
机器学习(Machine learning)是一种人工智能的技术,通过让机器通过对过去已知大量数据的学习,逐渐有能力从数据中发现接近现实的规律,并通过这些规律对未来的某些状况进行预测,从而实现自主学习和预测的能力。
建模过程中,根据数据是否有明确标签,可以把机器学习分为监督学习、无监督学习和半监督学习三种类型。
监督学习:从有标签的数据中学习规律和模式,以便在未知数据上进行预测和分类。
无监督学习:从无标签的数据中学习规律和模式,以便在未知数据上进行聚类和降维等操作。
半监督学习:将监督学习和无监督学习相结合,利用少量有标签的数据和大量无标签的数据进行学习。
根据机器学习的应用场景,目前可以分为分类问题、回归问题、聚类问题三大类。
分类问题:机器学习可以通过对已知类别的数据进行学习,从而对未知类别的数据进行分类。比如在垃圾邮件识别中,机器学习算法可以通过学习已知的垃圾邮件和非垃圾邮件,来判断一封新收到的邮件是否是垃圾邮件。分类问题的常见算法有K近邻算法、逻辑回归、朴素贝叶斯、决策树、随机森林、支持向量机(SVM算法)等,后续文章会详细介绍。
回归问题:机器学习可以通过对已知的数据进行学习,从而对新的数据进行预测。比如在股票市场中,机器学习算法可以通过学习历史股票价格数据,来预测未来的股票价格。回归问题的常见算法有线性回归等,后续文章会详细介绍。
聚类问题:机器学习可以将数据按照一定的特征进行聚类,从而将相似的数据归为一类。比如在客户分析中,机器学习算法可以通过学习客户的购买行为和喜好,将相似的客户归为一类,从而对不同的客户群体进行针对性的营销。聚类算法属于无监督学习,后续会介绍一下K均值算法(K-means)。
机器学习的优点(和深度学习相比):
易于理解和实现,成本较低,好落地。
适用于小规模数据。
可解释性强,相对可控。
适用于各种类型的数据。机器学习的算法适用于各种类型的数据,包括结构化数据和非结构化数据。
机器学习的缺点(和深度学习相比):
需要手动提取特征。这需要专业知识和经验,并且很难得到最佳特征,因此这也是体现产品经理价值的重要环节。
对数据质量要求高。机器学习的算法对数据质量要求较高,如果数据质量较差,会影响预测结果的准确性。
预测效果受限。机器学习的算法预测效果受限,无法处理较为复杂的数据集。
深度学习(Deep learning)是一种机器学习的分支,它是通过构建多层神经网络来实现自主学习和预测的能力。深度学习的核心是深度神经网络,它由多个层次的神经元组成,每一层都可以提取出不同的特征信息,从而实现对复杂数据的学习和预测。深度学习的应用范围非常广泛,包括图像识别、语音识别、自然语言处理等领域。
深度学习常见算法有反向传播(Backpropagation)、卷积神经网络(CNN)、循环神经网络(RNN)、生成对抗网络(GAN)等,后续会详细介绍。
深度学习的优点(和传统机器学习相比):
深度学习的缺点(和传统机器学习相比):
(1)学习目的
(1)学习目的
(1)学习目的
(1)学习目的:了解常见的微调模型的基本流程和原理,熟练数据集的构造、训练、评估等过程,能够独立构建QA对,在服务器上对模型进行微调
(2)学习要求
能够独立完成大模型的微调数据构建、训练以及部署工作
(1)学习目的
RAG作为目前最火的一个LLM落地方向,可以结合私有数据(表格、word、txt、pdf、数据库皆可)实现本地回答,且训练成本较低,可以快速实现效果
(2)学习内容
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。