赞
踩
Spark 是一种基于内存的快速、通用、可扩展的大数据分析计算引擎。
由此可以获知,Spark 出现的时间相对较晚,并且主要功能主要是用于数据计算,所以其实 Spark 一直被认为是 Hadoop 框架的升级版。
Hadoop 的 MR 框架和 Spark 框架都是数据处理框架,那么我们在使用时如何选择呢?
经过上面的比较,我们可以看出在绝大多数的数据计算场景中,Spark 确实会比 MapReduce更有优势。但是 Spark 是基于内存的,所以在实际的生产环境中,由于内存的限制,可能会由于内存资源不够导致 Job 执行失败,此时,MapReduce 其实是一个更好的选择,所以Spark并不能完全替代 MR。
Spark 由 Scala 语言开发的,所以本课件接下来的开发所使用的语言也为 Scala,咱们当前使用的 Spark 版本为 3.0.0,默认采用的 Scala 编译版本为 2.12,所以后续开发时。我们依然采用这个版本。开发前请保证 IDEA 开发工具中含有 Scala 开发插件
修改 Maven 项目中的 POM 文件,增加 Spark 框架的依赖关系。该项目中使用的是Spark3.0 版本,对应的scala 是2.12.11。
<dependencies>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.12</artifactId>
<version>3.0.0</version>
</dependency>
</dependencies>
object WordCount {
def main(args: Array[String]): Unit = {
// 创建 Spark 运行配置对象
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("WordCount")
// 创建 Spark 上下文环境对象(连接对象)
val sc: SparkContext = new SparkContext(sparkConf)
// 读取文件数据
val fileRDD: RDD[String] = sc.textFile("input/word.txt")
// 将文件中的数据进行分词
val wordRDD: RDD[String] = fileRDD.flatMap(_.split(" "))
// 转换数据结构 word => (word, 1)
val word2OneRDD: RDD[(String, Int)] = wordRDD.map((_, 1))
// 将转换结构后的数据按照相同的单词进行分组聚合
val word2CountRDD: RDD[(String, Int)] = word2OneRDD.reduceByKey(_ + _)
// 将数据聚合结果采集到内存中
val word2Count: Array[(String, Int)] = word2CountRDD.collect()
// 打印结果
word2Count.foreach(println)
//关闭 Spark 连接
sc.stop()
}
如果本机操作系统是 Windows,在程序中使用了 Hadoop 相关的东西,比如写入文件到HDFS,则会遇到如下异常:
出现这个问题的原因,并不是程序的错误,而是 windows 系统用到了 hadoop 相关的服务,解决办法是通过配置关联到 windows 的系统依赖就可以了
在 IDEA 中配置 Run Configuration,添加 HADOOP_HOME 变量就可以了。
Spark 作为一个数据处理框架和计算引擎,被设计在所有常见的集群环境中运行, 在国内工作中主流的环境为 Yarn,不过逐渐容器式环境也慢慢流行起来。接下来,我们就分别看看不同环境下 Spark 的运行
所谓的 Local 模式,就是不需要其他任何节点资源就可以在本地执行 Spark 代码的环境,一般用于教学,调试,演示等,之前在 IDEA 中运行代码的环境我们称之为开发环境,不太一样。
将 spark-3.0.0-bin-hadoop3.2.tgz 文件上传到 Linux 并解压缩,放置在指定位置,路径中不要包含中文或空格。Spark安装包
tar -zxvf spark-3.0.0-bin-hadoop3.2.tgz -C /opt/module
cd /opt/module
mv spark-3.0.0-bin-hadoop3.2 spark-local
bin/spark-shell
http://虚拟机地址:4040
在解压缩文件夹下的 data 目录中,添加 word.txt 文件。在命令行工具中执行如下代码指令
sc.textFile("data/word.txt").flatMap(_.split("")).map((_,1)).reduceByKey(_+_).collect
按键 Ctrl+C 或输入 Scala 指令:quit
bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master local[2] \
./examples/jars/spark-examples_2.12-3.0.0.jar \
10
local 本地模式毕竟只是用来进行练习演示的,真实工作中还是要将应用提交到对应的集群中去执行,这里我们来看看只使用 Spark 自身节点运行的集群模式,也就是我们所谓的独立部署(Standalone)模式。Spark 的 Standalone 模式体现了经典的 master-slave 模式。
集群规划:
hadoop102 | hadoop103 | hadoop104 |
---|---|---|
Worker Master | Worker | Worker |
将 spark-3.0.0-bin-hadoop3.2.tgz 文件上传到 Linux 并解压缩在指定位置
tar -zxvf spark-3.0.0-bin-hadoop3.2.tgz -C /opt/module
cd /opt/module
mv spark-3.0.0-bin-hadoop3.2 spark-standalone
mv slaves.template slaves
hadoop102
hadoop103
hadoop104
mv spark-env.sh.template spark-env.sh
export JAVA_HOME=/opt/module/jdk1.8.0_144
SPARK_MASTER_HOST=hadoop102
SPARK_MASTER_PORT=7077
注意:7077 端口,相当于 hadoop3 内部通信的 8020 端口,此处的端口需要确认自己的 Hadoop配置
xsync spark-standalone
sbin/start-all.sh
查看三台服务器运行进程
查看 Master 资源监控 Web UI 界面: http://hadoop102:8080
bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://hadoop102:7077 \
./examples/jars/spark-examples_2.12-3.0.0.jar \
10
执行任务时,会产生多个 Java 进程,默认采用服务器集群节点的总核数,每个节点内存 1024M。
在提交应用中,一般会同时一些提交参数
bin/spark-submit \
--class <main-class>
--master <master-url> \
... # other options
<application-jar> \
[application-arguments]
参数 | 解释 | 可选值举例 |
---|---|---|
–class | Spark 程序中包含主函数的类 | |
–master | Spark 程序运行的模式(环境) 模式:local[*]、spark://hadoop102:7077 | Spark 程序中包含主函数的类 |
–executor-memory 1G | 指定每个 executor 可用内存为 1G | 符合集群内存配置即可,具体情况具体分析。 |
–total-executor-cores 2 | 指定所有executor使用的cpu核数为 2 个 | 符合集群内存配置即可,具体情况具体分析。 |
–executor-cores | 指定每个executor使用的cpu核数 | 符合集群内存配置即可,具体情况具体分析。 |
application-jar | 打包好的应用 jar,包含依赖。这个 URL 在集群中全局可见。 比 如 hdfs:// 共享存储系统,如果是 file:// path,那么所有的节点的path 都包含同样的 jar | 符合集群内存配置即可,具体情况具体分析。 |
application-arguments | 传给 main()方法的参数 | 符合集群内存配置即可,具体情况具体分析。 |
由于 spark-shell 停止掉后,集群监控 hadoop102:4040 页面就看不到历史任务的运行情况,所以开发时都配置历史服务器记录任务运行情况。
mv spark-defaults.conf.template spark-defaults.conf
spark.eventLog.enabled true
spark.eventLog.dir hdfs://hadoop102:8020/sparkHistoryDirectory
注意:需要启动 hadoop 集群,HDFS 上的 sparkHistoryDirectory 目录需要提前存在。
export SPARK_HISTORY_OPTS="
-Dspark.history.ui.port=18080
-Dspark.history.fs.logDirectory=hdfs://hadoop102:8020/sparkHistoryDirectory
-Dspark.history.retainedApplications=30"
xsync conf
sbin/start-all.sh
sbin/start-history-server.sh
bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://hadoop102:7077 \
./examples/jars/spark-examples_2.12-3.0.0.jar \
10
所谓的高可用是因为当前集群中的 Master 节点只有一个,所以会存在单点故障问题。所以为了解决单点故障问题,需要在集群中配置多个 Master 节点,一旦处于活动状态的 Master发生故障时,由备用 Master 提供服务,保证作业可以继续执行。
这里的高可用一般采用Zookeeper 设置
集群规划:
hadoop102 | hadoop103 | hadoop104 |
---|---|---|
Master | Master | |
Zookeeper | Zookeeper | Zookeeper |
Worker | Worker | Worker |
sbin/stop-all.sh
sbin/stop-history-server.sh
xstart zk
注释如下内容:
#SPARK_MASTER_HOST=hadoop102
#SPARK_MASTER_PORT=7077
#添加如下内容:
#Master 监控页面默认访问端口为 8080,但是可能会和 Zookeeper 冲突,所以改成 8989,也可以自定义,访问 UI 监控页面时请注意
SPARK_MASTER_WEBUI_PORT=8989
export SPARK_DAEMON_JAVA_OPTS="
-Dspark.deploy.recoveryMode=ZOOKEEPER
-Dspark.deploy.zookeeper.url=hadoop102,hadoop103,hadoop104
-Dspark.deploy.zookeeper.dir=/spark"
xsync conf/
sbin/start-all.sh
sbin/start-master.sh
bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://hadoop102:7077,hadoop103:7077 \
./examples/jars/spark-examples_2.12-3.0.0.jar \
10
独立部署(Standalone)模式由 Spark 自身提供计算资源,无需其他框架提供资源。这种方式降低了和其他第三方资源框架的耦合性,独立性非常强。但是你也要记住,Spark 主要是计算框架,而不是资源调度框架,所以本身提供的资源调度并不是它的强项,所以还是和其他专业的资源调度框架集成会更靠谱一些。
将 spark-3.0.0-bin-hadoop3.2.tgz 文件上传到 linux 并解压缩,放置在指定位置。
tar -zxvf spark-3.0.0-bin-hadoop3.2.tgz -C /opt/module
cd /opt/module
mv spark-3.0.0-bin-hadoop3.2 spark-yarn
<!--是否启动一个线程检查每个任务正使用的物理内存量,如果任务超出分配值,则直接将其杀掉,默认是 true -->
<property>
<name>yarn.nodemanager.pmem-check-enabled</name>
<value>false</value>
</property>
<!--是否启动一个线程检查每个任务正使用的虚拟内存量,如果任务超出分配值,则直接将其杀掉,默认是 true -->
<property>
<name>yarn.nodemanager.vmem-check-enabled</name>
<value>false</value>
</property>
mv spark-env.sh.template spark-env.sh
# 添加以下内容
export JAVA_HOME=/opt/module/jdk1.8.0_144
YARN_CONF_DIR=/opt/module/hadoop/etc/hadoop
bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn \
--deploy-mode cluster \
./examples/jars/spark-examples_2.12-3.0.0.jar \
10
查看 http://hadoop103:8088 页面,点击 History
mv spark-defaults.conf.template spark-defaults.conf
spark.eventLog.enabled true
spark.eventLog.dir hdfs://hadoop102:8020/sparkHistoryDirectory
注意:需要启动 hadoop 集群,HDFS 上的目录需要提前存在。
sbin/start-dfs.sh
hadoop fs -mkdir /sparkHistoryDirectory
export SPARK_HISTORY_OPTS="
-Dspark.history.ui.port=18080
-Dspark.history.fs.logDirectory=hdfs://hadoop102:8020/sparkHistoryDirectory
-Dspark.history.retainedApplications=30"
spark.yarn.historyServer.address=hadoop102:18080
spark.history.ui.port=18080
sbin/start-history-server.sh
bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn \
--deploy-mode client \
./examples/jars/spark-examples_2.12-3.0.0.jar \
10
Mesos 是 Apache 下的开源分布式资源管理框架,它被称为是分布式系统的内核,在Twitter 得到广泛使用,管理着 Twitter 超过 30,0000 台服务器上的应用部署,但是在国内,依然使用着传统的 Hadoop 大数据框架,所以国内使用 Mesos 框架的并不多,但是原理其实都差不多。
容器化部署是目前业界很流行的一项技术,基于 Docker 镜像运行能够让用户更加方便地对应用进行管理和运维。容器管理工具中最为流行的就是 Kubernetes(k8s),而 Spark也在最近的版本中支持了 k8s 部署模式。这里我们也不做过多的讲解。参考链接
自己学习时,每次都需要启动虚拟机,启动集群,这是一个比较繁琐的过程,并且会占大量的系统资源,导致系统执行变慢,不仅仅影响学习效果,也影响学习进度,Spark 非常暖心地提供了可以在 windows 系统下启动本地集群的方式,这样,在不使用虚拟机的情况下,也能学习 Spark 的基本使用。
将文件 spark-3.0.0-bin-hadoop3.2.tgz 解压缩到无中文无空格的路径中.
在 DOS 命令行窗口中执行提交指令
spark-submit --class org.apache.spark.examples.SparkPi --master local[2] ../examples/jars/spark-examples_2.12-3.0.0.jar 10
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。