赞
踩
KNeighborsClassifier():
- '''
- KNeighborsClassifier(n_neighbors=5, weights='uniform',
- algorithm='auto', leaf_size=30,
- p=2, metric='minkowski',
- metric_params=None, n_jobs=1, **kwargs)
- n_neighbors: 默认值为5,表示查询k个最近邻的数目
- algorithm: {‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’},指定用于计算最近邻的算法,auto表示试图采用最适合的算法计算最近邻
- leaf_size: 传递给‘ball_tree’或‘kd_tree’的叶子大小
- metric: 用于树的距离度量。默认'minkowski与P = 2(即欧氏度量)
- n_jobs: 并行工作的数量,如果设为-1,则作业的数量被设置为CPU内核的数量
- 查看官方api:http://scikit-learn.org/dev/modules/generated/sklearn.neighbors.KNeighborsClassifier.html#sklearn.neighbors.KNeighborsClassifier
- '''
示例:
- # -*- coding: utf-8 -*-
- """
- Created on Fri Feb 15 18:01:45 2019
- @author: Administrator
- """
-
- import numpy as np
- from sklearn import neighbors
- import warnings
-
- warnings.filterwarnings('ignore') # warning信息不打印,可有可无
-
- knn = neighbors.KNeighborsClassifier() # 取得knn分类器
-
- data = np.array([[1, 1, 1, 1],
- [0.5, 1, 1, 1],
- [0.1, 0.1, 0.1, 0.1],
- [0.5, 0.5, 0.5, 0.5],
- [1, 0.8, 0.3, 1],
- [0.6, 0.5, 0.7, 0.5],
- [1, 1, 0.9, 0.5],
- [1, 0.6, 0.5, 0.8],
- [0.5, 0.5, 1, 1],
- [0.9, 1, 1, 1],
- [0.6, 0.6, 1, 0.1],
- [1, 0.8, 0.5, 0.5],
- [1, 0.1, 0.1, 1],
- [1, 1, 0.7, 0.3],
- [0.2, 0.3, 0.4, 0.5],
- [0.5, 1, 0.6, 0.6]
- ])
-
- labels = np.array(['美女',
- '淑女',
- '丑女',
- '一般型',
- '淑女',
- '一般型',
- '美女',
- '一般型',
- '淑女',
- '美女',
- '丑女',
- '可爱型',
- '可爱型',
- '淑女',
- '丑女',
- '可爱型'
- ])
-
- knn.fit(data, labels) # 导入数据进行训练
-
- print('预测类型为:', knn.predict([[0.8, 1, 1, 1]]))

结果:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。