当前位置:   article > 正文

Python实现贝叶斯优化器(Bayes_opt)优化XGBoost分类模型(XGBClassifier算法)项目实战_python 贝叶斯优化器优化的xgboost回归模型

python 贝叶斯优化器优化的xgboost回归模型

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。




1.项目背景

贝叶斯优化器 (BayesianOptimization) 是一种黑盒子优化器,用来寻找最优参数。

贝叶斯优化器是基于高斯过程的贝叶斯优化,算法的参数空间中有大量连续型参数,运行时间相对较短。

贝叶斯优化器目标函数的输入必须是具体的超参数,而不能是整个超参数空间,更不能是数据、算法等超参数以外的元素。

本项目使用基于贝叶斯优化器(Bayes_opt)优化XGBoost分类算法来解决分类问题。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

 数据详情如下(部分展示):

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

从上图可以看到,总共有10个字段。

关键代码:

3.2 缺失值统计

使用Pandas工具的info()方法统计每个特征缺失情况:

从上图可以看到,数据不存在缺失值,总数据量为1000条。

关键代码:

3.3 数据描述性统计

通过Pandas工具的describe()方法来来统计变量的平均值、标准差、最大值、最小值、分位数等信息:

关键代码如下:

4.探索性数据分析

4.1 y变量分类柱状图

用Pandas工具的value_counts().plot()方法进行统计绘图,图形化展示如下:

从上面图中可以看到,分类为0和1的样本,数量基本一致。   

4.2 y变量类型为1 x1变量分布直方图

通过Matpltlib工具的hist()方法绘制直方图:

从上图可以看出,x1主要集中在-2到1之间。

4.3 相关性分析

通过Pandas工具的corr()方法和seaborn工具的heatmap()方法绘制相关性热力图:

从图中可以看到,正数为正相关,负数为负相关,绝对值越大相关性越强。   

5.特征工程

5.1 建立特征数据和标签数据

y为标签数据,除 y之外的为特征数据。关键代码如下:

5.2 数据集拆分

数据集集拆分,分为训练集和测试集,80%训练集和20%测试集。关键代码如下:

6.构建贝叶斯优化器优化XGBoost分类模型

主要使用基于贝叶斯优化器优化XGBoost分类算法,用于目标分类。

6.1 构建调优模型

6.2 最优参数展示

寻优的过程信息:

最优参数结果展示:

最优参数组合:  

max_depth的参数值为: 1

n_estimators的参数值为: 207

learning_rate的参数值为: 0.07

最优分数:   0.8574999999999999

 6.3 最优参数构建模型

 

7.模型评估

7.1 评估指标及结果

评估指标主要包括准确率、查准率、召回率、F1分值等等。

从上表可以看出,F1分值为0.8571,说明此模型效果良好。

关键代码如下:

7.2 分类报告

XGBoost分类模型的分类报告:

从上图可以看到,分类类型为0的F1分值为0.87;分类类型为1的F1分值为0.86;整个模型的准确率为0.86。

7.3 混淆矩阵

 

从上图可以看出,实际为0预测不为0的 有13个样本;实际为1预测不为1的 有14个样本,整体预测准确率良好。  

8.结论与展望

综上所述,本项目采用了基于贝叶斯优化器优化XGBoost分类模型,最终证明了我们提出的模型效果良好。


  1. # 本次机器学习项目实战所需的资料,项目资源如下:
  2. # 项目说明:
  3. # 链接:https://pan.baidu.com/s/1G6rIBI6XG-czFy2u0CTa_w
  4. # 提取码:pe36

 更多项目实战,详见机器学习项目实战合集列表:

机器学习项目实战合集列表_机器学习实战项目_胖哥真不错的博客-CSDN博客


声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/寸_铁/article/detail/742249
推荐阅读
相关标签
  

闽ICP备14008679号