赞
踩
在实际应用场景中,由于训练数据集不足,所以很少有人会从头开始训练整个网络。普遍的做法是,在一个非常大的基础数据集上训练得到一个预训练模型,然后使用该模型来初始化网络的权重参数或作为固定特征提取器应用于特定的任务中。本章将使用迁移学习的方法对ImageNet数据集中的狼和狗图像进行分类。
下载案例所用到的狗与狼分类数据集,数据集中的图像来自于ImageNet,每个分类有大约120张训练图像与30张验证图像。使用download
接口下载数据集,并将下载后的数据集自动解压到当前目录下。
狼狗数据集提取自ImageNet分类数据集,使用mindspore.dataset.ImageFolderDataset
接口来加载数据集,并进行相关图像增强操作。
首先执行过程定义一些输入:
从mindspore.dataset.ImageFolderDataset
接口中加载的训练数据集返回值为字典,用户可通过 create_dict_iterator
接口创建数据迭代器,使用 next
迭代访问数据集。本章中 batch_size
设为18,所以使用 next
一次可获取18个图像及标签数据。
训练模型
本章使用ResNet50模型进行训练。搭建好模型框架后,通过将`pretrained`参数设置为True来下载[ResNet50的预训练模型](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/models/application/resnet50_224_new.ckpt)并将权重参数加载到网络中。
使用固定特征进行训练的时候,需要冻结除最后一层之外的所有网络层。通过设置 requires_grad == False
冻结参数,以便不在反向传播中计算梯度。
开始训练模型,与没有预训练模型相比,将节约一大半时间,因为此时可以不用计算部分梯度。保存评估精度最高的ckpt文件于当前路径的./BestCheckpoint/resnet50-best-freezing-param.ckpt。
使用固定特征得到的best.ckpt文件对对验证集的狼和狗图像数据进行预测。若预测字体为蓝色即为预测正确,若预测字体为红色则预测错误。
图像分类是最基础的计算机视觉应用,属于有监督学习类别,如给定一张图像(猫、狗、飞机、汽车等等),判断图像所属的类别。本章将介绍使用ResNet50网络对CIFAR-10数据集进行分类。
ResNet50网络是2015年由微软实验室的何恺明提出,获得ILSVRC2015图像分类竞赛第一名。在ResNet网络提出之前,传统的卷积神经网络都是将一系列的卷积层和池化层堆叠得到的,但当网络堆叠到一定深度时,就会出现退化问题。下图是在CIFAR-10数据集上使用56层网络与20层网络训练误差和测试误差图,由图中数据可以看出,56层网络比20层网络训练误差和测试误差更大,随着网络的加深,其误差并没有如预想的一样减小。
ResNet网络提出了残差网络结构(Residual Network)来减轻退化问题,使用ResNet网络可以实现搭建较深的网络结构(突破1000层)。论文中使用ResNet网络在CIFAR-10数据集上的训练误差与测试误差图如下图所示,图中虚线表示训练误差,实线表示测试误差。由图中数据可以看出,ResNet网络层数越深,其训练误差和测试误差越小。
CIFAR-10数据集共有60000张32*32的彩色图像,分为10个类别,每类有6000张图,数据集一共有50000张训练图片和10000张评估图片。首先,如下示例使用download
接口下载并解压,目前仅支持解析二进制版本的CIFAR-10文件(CIFAR-10 binary version)。
下载后的数据集目录结构如下:
- datasets-cifar10-bin/cifar-10-batches-bin
- ├── batches.meta.text
- ├── data_batch_1.bin
- ├── data_batch_2.bin
- ├── data_batch_3.bin
- ├── data_batch_4.bin
- ├── data_batch_5.bin
- ├── readme.html
- └── test_batch.bin
然后,使用mindspore.dataset.Cifar10Dataset
接口来加载数据集,并进行相关图像增强操作。
残差网络结构(Residual Network)是ResNet网络的主要亮点,ResNet使用残差网络结构后可有效地减轻退化问题,实现更深的网络结构设计,提高网络的训练精度。本节首先讲述如何构建残差网络结构,然后通过堆叠残差网络来构建ResNet50网络。
残差网络结构图如下图所示,残差网络由两个分支构成:一个主分支,一个shortcuts(图中弧线表示)。主分支通过堆叠一系列的卷积操作得到,shotcuts从输入直接到输出,主分支输出的特征矩阵
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。