赞
踩
CRC即循环冗余校验码(Cyclic Redundancy Check):是数据通信领域中最常用的一种查错校验码,其特征是信息字段和校验字段的长度可以任意选定。奇偶校验虽然简单,但是漏检率太高,而CRC则要低的多,所以大多数都是使用CRC来校验。CRC也称为多项式码。
循环冗余检查(CRC)是一种数据传输检错功能,对数据进行多项式计算,并将得到的结果附在帧的后面,接收设备也执行类似的算法,进而可以保证在软件层次上数据传输的正确性和完整性。
CRC-16及CRC-CCITT码则用是来传送8-bit字符,其中CRC-16为美国采用,而CRC-CCITT为欧洲国家所采用。CRC-32码大都被采用在一种称为Point-to-Point的同步传输中。
以CRC16-CCITT为例进行说明,CRC校验码为16位,生成多项式17位。假如数据流为4字节:BYTE[3]、BYTE[2]、BYTE[1]、BYTE[0];
数据流左移16位,相当于扩大256×256倍,再除以生成多项式0x11021,做不借位的除法运算(相当于按位异或),所得的余数就是CRC校验码。
发送时的数据流为6字节:BYTE[3]、BYTE[2]、BYTE[1]、BYTE[0]、CRC[1]、CRC[0];
将扩大后的数据流(6字节)高16位(BYTE[3]、BYTE[2])放入一个长度为16的寄存器;
如果寄存器的首位为1,将寄存器左移1位(寄存器的最低位从下一个字节获得),再与生成多项式的简记式异或;
否则仅将寄存器左移1位(寄存器的最低位从下一个字节获得);
3)重复第2步,直到数据流(6字节)全部移入寄存器;
4)寄存器中的值则为CRC校验码CRC[1]、CRC[0]。
把按字节排列的数据流表示成数学多项式,设数据流为BYTE[n]BYTE[n-1]BYTE[n-2]、、、BYTE[1]BYTE[0],表示成数学表达式为BYTE[n]×256^n+BYTE[n-1]×256^(n-1)+...+BYTE[1]*256+BYTE[0],在这里+表示为异或运算。设生成多项式为G17(17bit),CRC码为CRC16。 则,CRC16=(BYTE[n]×256^n+BYTE[n-1]×256^(n-1)+...+BYTE[1]×256+BYTE[0])×256^2/G17,即数据流左移16位,再除以生成多项式G17。 先变换BYTE[n-1]、BYTE[n-1]扩大后的形式, CRC16=BYTE[n]×256^n×256^2/G17+BYTE[n-1]×256^(n-1)×256^2/G17+...+BYTE[1]×256×256^2/G17+BYTE[0]×256^2/G17 =(Z[n]+Y[n]/G17)×256^n+BYTE[n-1]×256^(n-1)×256^2/G17+...+BYTE[1]×256×256^2/G17+BYTE[0]×256^2/G17 =Z[n]×256^n+{Y[n]×256/G17+BYTE[n-1]×256^2/G17}×256^(n-1)+...+BYTE[1]×256×256^2/G17+BYTE[0]×256^2/G17 =Z[n]×256^n+{(YH8[n]×256+YHL[n])×256/G17+BYTE[n-1]×256^2/G17}×256^(n- 1)+...+BYTE[1]×256×256^2/G17+BYTE[0]×256^2/G17 =Z[n]×256^n+{YHL[n]×256/G17+(YH8[n]+BYTE[n-1])×256^2/G17}×256^(n-1)+...+BYTE[1]×256×256^2/G17+BYTE[0]×256^2/G17 这样就推导出,BYTE[n-1]字节的CRC校验码为{YHL[n]×256/G17+(YH8[n]+BYTE[n-1])×256^2/G17},即上一字节CRC校验码Y[n]的高8位(YH8[n])与本字节BYTE[n-1]异或, 该结果单独计算CRC校验码(即单字节的16位CRC校验码,对单字节可建立表格,预先生成对应的16位CRC校验码),所得的CRC校验码与上一字节CRC校验码Y[n]的低8位(YL8[n])乘以256(即左移8位)异或。然后依次逐个字节求出CRC,直到BYTE[0]。 字节型算法的一般描述为:本字节的CRC码,等于上一字节CRC码的低8位左移8位,与上一字节CRC右移8位同本字节异或后所得的CRC码异或。
CRC寄存器组初始化为全"0"(0x0000)。
注意:CRC寄存器组初始化全为1时,最后CRC应取反。
CRC寄存器组向左移8位,并保存到CRC寄存器组。
原CRC寄存器组高8位(右移8位)与数据字节进行异或运算,得出一个指向值表的索引。
索引所指的表值与CRC寄存器组做异或运算。
数据指针加1,如果数据没有全部处理完,则重复步骤2)。
得出CRC。
#include "crc16.h" /** CRC table for the CRC-16. The poly is 0x8005 (x^16 + x^15 + x^2 + 1) */ static unsigned short const crc16_table[] = { 0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280, 0xC241, 0xC601, 0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1, 0xC481, 0x0440, 0xCC01, 0x0CC0, 0x0D80, 0xCD41, 0x0F00, 0xCFC1, 0xCE81, 0x0E40, 0x0A00, 0xCAC1, 0xCB81, 0x0B40, 0xC901, 0x09C0, 0x0880, 0xC841, 0xD801, 0x18C0, 0x1980, 0xD941, 0x1B00, 0xDBC1, 0xDA81, 0x1A40, 0x1E00, 0xDEC1, 0xDF81, 0x1F40, 0xDD01, 0x1DC0, 0x1C80, 0xDC41, 0x1400, 0xD4C1, 0xD581, 0x1540, 0xD701, 0x17C0, 0x1680, 0xD641, 0xD201, 0x12C0, 0x1380, 0xD341, 0x1100, 0xD1C1, 0xD081, 0x1040, 0xF001, 0x30C0, 0x3180, 0xF141, 0x3300, 0xF3C1, 0xF281, 0x3240, 0x3600, 0xF6C1, 0xF781, 0x3740, 0xF501, 0x35C0, 0x3480, 0xF441, 0x3C00, 0xFCC1, 0xFD81, 0x3D40, 0xFF01, 0x3FC0, 0x3E80, 0xFE41, 0xFA01, 0x3AC0, 0x3B80, 0xFB41, 0x3900, 0xF9C1, 0xF881, 0x3840, 0x2800, 0xE8C1, 0xE981, 0x2940, 0xEB01, 0x2BC0, 0x2A80, 0xEA41, 0xEE01, 0x2EC0, 0x2F80, 0xEF41, 0x2D00, 0xEDC1, 0xEC81, 0x2C40, 0xE401, 0x24C0, 0x2580, 0xE541, 0x2700, 0xE7C1, 0xE681, 0x2640, 0x2200, 0xE2C1, 0xE381, 0x2340, 0xE101, 0x21C0, 0x2080, 0xE041, 0xA001, 0x60C0, 0x6180, 0xA141, 0x6300, 0xA3C1, 0xA281, 0x6240, 0x6600, 0xA6C1, 0xA781, 0x6740, 0xA501, 0x65C0, 0x6480, 0xA441, 0x6C00, 0xACC1, 0xAD81, 0x6D40, 0xAF01, 0x6FC0, 0x6E80, 0xAE41, 0xAA01, 0x6AC0, 0x6B80, 0xAB41, 0x6900, 0xA9C1, 0xA881, 0x6840, 0x7800, 0xB8C1, 0xB981, 0x7940, 0xBB01, 0x7BC0, 0x7A80, 0xBA41, 0xBE01, 0x7EC0, 0x7F80, 0xBF41, 0x7D00, 0xBDC1, 0xBC81, 0x7C40, 0xB401, 0x74C0, 0x7580, 0xB541, 0x7700, 0xB7C1, 0xB681, 0x7640, 0x7200, 0xB2C1, 0xB381, 0x7340, 0xB101, 0x71C0, 0x7080, 0xB041, 0x5000, 0x90C1, 0x9181, 0x5140, 0x9301, 0x53C0, 0x5280, 0x9241, 0x9601, 0x56C0, 0x5780, 0x9741, 0x5500, 0x95C1, 0x9481, 0x5440, 0x9C01, 0x5CC0, 0x5D80, 0x9D41, 0x5F00, 0x9FC1, 0x9E81, 0x5E40, 0x5A00, 0x9AC1, 0x9B81, 0x5B40, 0x9901, 0x59C0, 0x5880, 0x9841, 0x8801, 0x48C0, 0x4980, 0x8941, 0x4B00, 0x8BC1, 0x8A81, 0x4A40, 0x4E00, 0x8EC1, 0x8F81, 0x4F40, 0x8D01, 0x4DC0, 0x4C80, 0x8C41, 0x4400, 0x84C1, 0x8581, 0x4540, 0x8701, 0x47C0, 0x4680, 0x8641, 0x8201, 0x42C0, 0x4380, 0x8341, 0x4100, 0x81C1, 0x8081, 0x4040 }; /** * crc16 - compute the CRC-16 for the data buffer * @crc: previous CRC value * @buffer: data pointer * @len: number of bytes in the buffer * * Returns the updated CRC value. */ static unsigned short crc16_byte(unsigned short crc, const unsigned char data) { return (crc >> 8) ^ crc16_table[(crc ^ data) & 0xff]; } unsigned short crc16(unsigned short crc, unsigned char const *buffer, unsigned int len) { while (len--) crc = crc16_byte(crc, *buffer++); return crc; }
/* * crc16.h - CRC-16 routine * * Implements the standard CRC-16: * Width 16 * Poly 0x8005 (x^16 + x^15 + x^2 + 1) * Init 0 */ #ifndef __CRC16_H #define __CRC16_H #ifdef __cplusplus unsigned short crc16(unsigned short crc, const unsigned char *buffer, unsigned int len); #endif /* __CRC16_H */
在开始时CRC寄存器的每一位都预置为1,然后把CRC寄存器与8-bit的数据进行异或,之后对CRC寄存器从高到低进行移位,在最高位(MSB)的位置补零,而最低位(LSB移位后已经被移出CRC寄存器)如果为,则把寄存器与预定义的多项式码进行异或,否则如果LSB为零,则无需进行异或。重复上述的由高至低的移位8次,第一个8-bit数据处理完毕,用此时CRC寄存器的值与下一个8-bit数据异或并进行如前一个数据似的8次移位,所有的字符处理完成后CRC寄存器内的值即为最终的CRC值。
CRC校验工具http://www.metools.info/code/c15.html
// ----------------------------------------------------------------- // CRC16计算方法3:使用直接结算的方法 // ----------------------------------------------------------------- WORD CRC16_3(BYTE* pchMsg, WORD wDataLen) { BYTE i, chChar; WORD wCRC = 0xFFFF; while (wDataLen--) { chChar = *pchMsg++; chChar = ByteInvert(chChar); wCRC ^= (((WORD) chChar) << 8); for (i = 0; i < 8; i++) { if (wCRC & 0x8000) wCRC = (wCRC << 1) ^ CRC_16_POLYNOMIALS; else wCRC <<= 1; } } wCRC = WordInvert(wCRC); return wCRC; }
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。