当前位置:   article > 正文

池化层(pooling)

池化层

目录

一、池化层

1、最大池化层

2、平均池化层

3、总结

二、代码实现

1、最大池化与平均池化

2、填充和步幅(padding和strides)

3、多个通道

4、总结


一、池化层

1、最大池化层

2、平均池化

3、总结

  • 池化层返回窗口中最大或平均值
  • 环节卷积层对位置的敏感性
  • 同样有窗口大小、填充和步幅作为超参数

二、代码实现

       通常当我们处理图像时,我们希望逐渐降低隐藏表示的空间分辨率、聚集信息,这样随着我们在神经网络中层叠的上升,每个神经元对其敏感的感受野(输入)就越大。

       而我们的机器学习任务通常会跟全局图像的问题有关(例如,“图像是否包含一只猫呢?”),所以我们最后一层的神经元应该对整个输入的全局敏感。通过逐渐聚合信息,生成越来越粗糙的映射,最终实现学习全局表示的目标,同时将卷积图层的所有优势保留在中间层。

1、最大池化与平均池化

       在下面的代码中的`pool2d`函数,我们实现池化层的前向传播。然而,这里我们没有卷积核,输出为输入中每个区域的最大值或平均值。

  1. import torch
  2. from torch import nn
  3. from d2l import torch as d2l
  1. def pool2d(X, pool_size, mode='max'):
  2. p_h, p_w = pool_size # 池化核的尺寸
  3. Y = torch.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1)) # 由输入尺寸核池化核的尺寸得到输出的尺寸
  4. for i in range(Y.shape[0]):
  5. for j in range(Y.shape[1]):
  6. if mode == 'max': # 最大池化
  7. Y[i, j] = X[i: i + p_h, j: j + p_w].max()
  8. elif mode == 'avg': # 平均池化
  9. Y[i, j] = X[i: i + p_h, j: j + p_w].mean()
  10. return Y

       我们可以构建下图中的输入张量`X`,验证二维最大汇聚层的输出。

  1. X = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
  2. pool2d(X, (2, 2))
  1. tensor([[4., 5.],
  2. [7., 8.]])

       此外,我们还可以验证平均汇聚层。

pool2d(X, (2, 2), 'avg')
  1. tensor([[2., 3.],
  2. [5., 6.]])

2、填充和步幅(padding和strides)

       与卷积层一样,池化层也可以改变输出形状,我们可以通过填充和步幅以获得所需的输出形状。下面,我们用深度学习框架中内置的二维最大池化层,来演示池化层中填充和步幅的使用。我们首先构造了一个输入张量`X`,它有四个维度,其中样本数和通道数都是1。

  1. X = torch.arange(16, dtype=torch.float32).reshape((1, 1, 4, 4)) # (样本数, 通道数, 高, 宽)
  2. print(X)
  1. tensor([[[[ 0., 1., 2., 3.],
  2. [ 4., 5., 6., 7.],
  3. [ 8., 9., 10., 11.],
  4. [12., 13., 14., 15.]]]])

       默认情况下,深度学习框架中的步幅与池化窗口的大小相同。因此,如果我们使用形状为`(3, 3)`的汇聚窗口,那么默认情况下,我们得到的步幅形状为`(3, 3)`。

  1. pool2d = nn.MaxPool2d(3) # 使用形状为(3, 3)的池化窗口,于是默认使用步幅形状为(3, 3)
  2. pool2d(X)
tensor([[[[10.]]]])

       填充和步幅可以手动设定。

  1. pool2d = nn.MaxPool2d(3, padding=1, stride=2)
  2. pool2d(X)
  1. tensor([[[[ 5., 7.],
  2. [13., 15.]]]])

       当然,我们可以设定一个任意大小的矩形汇聚窗口,并分别设定填充和步幅的高度和宽度。

  1. pool2d = nn.MaxPool2d((2, 3), stride=(2, 3), padding=(0, 1))
  2. pool2d(X)
  1. tensor([[[[ 5., 7.],
  2. [13., 15.]]]])

3、多个通道

       在处理多通道输入数据时,池化层在每个输入通道上单独运算,而不是像卷积层一样在通道上对输入进行汇总。这意味着池化层的输出通道数与输入通道数相同。下面,我们将在通道维度上连结张量`X`和`X + 1`,以构建具有2个通道的输入。

  1. X = torch.cat((X, X + 1), 1) # 在通道维度叠加,因此是1
  2. print(X)
  3. print(X.shape)
  1. tensor([[[[ 0., 1., 2., 3.],
  2. [ 4., 5., 6., 7.],
  3. [ 8., 9., 10., 11.],
  4. [12., 13., 14., 15.]],
  5. [[ 1., 2., 3., 4.],
  6. [ 5., 6., 7., 8.],
  7. [ 9., 10., 11., 12.],
  8. [13., 14., 15., 16.]]]])
  9. torch.Size([1, 2, 4, 4])

       如下所示,池化后输出通道的数量仍然是2。

  1. pool2d = nn.MaxPool2d(3, padding=1, stride=2)
  2. print(pool2d(X))
  3. print(X.shape)
  1. tensor([[[[ 5., 7.],
  2. [13., 15.]],
  3. [[ 6., 8.],
  4. [14., 16.]]]])
  5. torch.Size([1, 2, 4, 4])

4、总结

  • 最大池化层会输出该窗口内的最大值,平均池化层会输出该窗口内的平均值。
  • 池化层的主要优点之一是减轻卷积层对位置的过度敏感。
  • 我们可以指定池化层的填充和步幅。
  • 使用最大池化层以及大于1的步幅,可减少空间维度(如高度和宽度)。
  • 池化层的输出通道数与输入通道数相同。
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小丑西瓜9/article/detail/194395
推荐阅读
相关标签
  

闽ICP备14008679号