当前位置:   article > 正文

本地部署GLM-4-9B清华智谱开源大模型方法和对话效果体验

本地部署GLM-4-9B清华智谱开源大模型方法和对话效果体验

GLM-4-9B清华大学和智谱AI推出的最新一代预训练模型GLM-4系列中的开源版本。在语义、数学、推理、代码和知识等多方面的数据集测评中,GLM-4-9B及其人类偏好对齐的版本GLM-4-9B-Chat均表现出较高的性能,其通用能力评测结果甚至超越了Llama-3-8B开源大模型,多模态版本也与GPT-4版本齐平。

除了能进行多轮对话,GLM-4-9B-Chat还具备网页浏览、代码执行、自定义工具调用和长文本推理等高级功能。 GLM-4模型增加了多语言支持,支持包括日语,韩语,德语在内的 26 种语言。GLM-4-9B还推出了支持 1M 上下文长度(约 200 万中文字符)的模型。

根据GLM-4大模型评测结果,在通用能力方面超越Llama3大模型,在多模态能力比肩GPT-4大模型系列版本,评测结果和调用方法详情:https://github.com/THUDM/GLM-4

本文介绍GLM-4大模型部署和使用方法,需要注意的是,GLM-4虽然开源了,但GLM-4大模型的权重的使用则需要遵循协议:https://huggingface.co/THUDM/glm-4-9b/blob/main/LICENSE

第一步:下载模型文件

GLM-4-9B模板目前还没有GGUF文件,因此老牛同学通过Git下载PyTorch张量参数文件在本地部署GLM-4-9B-Chat-1M大模型。

由于模型参数文件比较大,使用Git无法直接下载到本地,需要通过git-lfs工具包下载:

brew install git-lfs   
  • 1

通过Git复制模型文件到笔记本电脑:

git lfs install   git clone https://www.modelscope.cn/ZhipuAI/glm-4-9b-chat-1m.git GLM-4-9B-Chat-1M   
  • 1

总共有10个模型参数文件,平均每个文件1.8GB大小,总计18GB左右,因此在Git下载过程中,容易中断失败,可以通过以下命令多次尝试下载:

git lfs pull   
  • 1

GLM4模型参数文件列表

第二步:下线GLM4代码库

GLM-4的官方GitHub代码库中有很多使用样例和微调等Python代码,我们可直接进行调整和使用:

https://github.com/THUDM/GLM-4.git   
  • 1

第三步:启动GLM4客户端

打开GLM-4代码库中basic_demo/trans_cli_demo.py文件,修改第18行模型路径MODEL_PATH参数,内容为我们通过Git复制到本地的路径,如老牛同学的路径如下:

#MODEL_PATH = os.environ.get('MODEL_PATH', 'THUDM/glm-4-9b-chat')   MODEL_PATH = os.environ.get('MODEL_PATH', '/Users/shizihu/JupyterLab/GLM-4-9B-Chat-1M')   
  • 1

在启动之前,我们还需要安装几个Python工具包(当然也可以跳过,后面启动失败时在进行安装也是可以的):

pip install tiktoken   pip install accelerate   
  • 1

启动大模型客户端:python trans_cli_demo.py

% python trans_cli_demo.py   Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.   Loading checkpoint shards: 100%|██████████████████████████████████████████████| 10/10 [00:09<00:00,  1.04it/s]   WARNING:root:Some parameters are on the meta device device because they were offloaded to the disk.   Welcome to the GLM-4-9B CLI chat. Type your messages below.      You: 介绍一下你自己。   GLM-4:   我是一个人工智能助手,我的名字是 ChatGLM,是基于清华大学 KEG 实验室和智谱 AI 公司   
  • 1

GLM4模型对话

总结:GLM-4-9B比Llama-3-8B慢太多了

根据官方的评测报告,GLM-4-9B在对话、多模态等方面要比Llama-3-8B强不少,根据老牛同学本地部署对话的验证结果来看,对话的输出速度实在太慢了,简直就是在挤牙膏,一个字一个字的往外输出。

至于GLM-4-9B的多模态、工具调用、代码解释等能力,老牛同学本次就不一一演示了,GLM-4官方的GitHub代码库有很多Demo代码,大家可以对代码调整后尝试体验一下~

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小丑西瓜9/article/detail/711258
推荐阅读
相关标签
  

闽ICP备14008679号