当前位置:   article > 正文

python opencv描点画线_Py之cv2:cv2库(OpenCV,opencv-python)的简介、安装、使用方法

cv2 画线

Py之cv2:cv2库(OpenCV,opencv-python)的简介、安装、使用方法(常见函数、方法等)最强详细攻略

目录

关于OpenCV简介

OpenCV应用领域

1、计算机视觉领域方向

2、计算机操作底层技术

安装OpenCV的的两种方法

T1、使用whl文件法

T2、直接命令法

T3、Anaconda 环境下安装

OpenCV常见函数、方法

0、基本库函数

1、图像基本运算

2、Image.open 和cv2.imread 的区别及其转换


相关文章
Py之cv2:cv2库(OpenCV)的简介、安装、使用方法(常见函数、方法等)最强详细攻略
CV:计算机视觉图像的基础知识—以python的cv2库来了解计算机视觉图像基础
CV:计算机视觉图像的基础知识—以python的cv2库来了解计算机视觉图像基础—代码实现
CV:计算机视觉图像的基础知识—以python的cv2库来了解计算机视觉图像基础—代码实现—图像基础各种操作(函数及案例)

关于OpenCV简介

OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows、Android和Mac OS操作系统上。它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。 OpenCV用C++语言编写,它的主要接口也是C++语言,但是依然保留了大量的C语言接口。

在计算机视觉项目的开发中,OpenCV作为较大众的开源库,拥有了丰富的常用图像处理函数库,采用C/C++语言编写,可以运行在Linux/Windows/Mac等操作系统上,能够快速的实现一些图像处理和识别的任务。此外,OpenCV还提供了Java、python、cuda等的使用接口、机器学习的基础算法调用,从而使得图像处理和图像分析变得更加易于上手,让开发人员更多的精力花在算法的设计上。

OpenCV应用领域

1、计算机视觉领域方向

  • 1、人机互动
  • 2、物体识别
  • 3、图像分割
  • 4、人脸识别
  • 5、动作识别
  • 6、运动跟踪
  • 7、机器人
  • 8、运动分析
  • 9、机器视觉
  • 10、结构分析
  • 11、汽车安全驾驶

2、计算机操作底层技术

  1. 图像数据的操作: 分配、释放、复制、设置和转换。 图像是视频的输入输出I/O ,文件与摄像头的输入、图像和视频文件输出)。
  2. 矩阵和向量的操作以及线性代数的算法程序:矩阵积、解方程、特征值以及奇异值等。
  3. 各种动态数据结构:列表、队列、集合、树、图等。
  4. 基本的数字图像处理:滤波、边缘检测、角点检测、采样与差值、色彩转换、形态操作、直方图、图像金字塔等。
  5. 结构分析:连接部件、轮廓处理、距离变换、各自距计算、模板匹配、Hough变换、多边形逼近、直线拟合、椭圆拟合、Delaunay 三角划分等。
  6. 摄像头定标:发现与跟踪定标模式、定标、基本矩阵估计、齐次矩阵估计、立体对应。
  7. 运动分析:光流、运动分割、跟踪。
  8. 目标识别:特征法、隐马尔可夫模型:HMM。
  9. 基本的GUI:图像与视频显示、键盘和鼠标事件处理、滚动条。
  10. 图像标注:线、二次曲线、多边形、画文字。

安装OpenCV的的两种方法

1、几点注意事项:

  • 安装的时候是 opencv_python,但在导入的时候采用 import cv2。
  • 因为OpenCV依赖一些库,可以在本博客中查找一些依赖库的安装方法,例如安装Numpy方法等,本博客应有尽有!

T1、使用whl文件法

先去官网https://www.lfd.uci.edu/~gohlke/pythonlibs/#opencv,下载相应Python版本的OpenCV的whl文件&#x

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小小林熬夜学编程/article/detail/216247
推荐阅读
相关标签
  

闽ICP备14008679号