当前位置:   article > 正文

练习4-权重衰减(李沐函数简要解析)

练习4-权重衰减(李沐函数简要解析)

环境:练习1的环境

代码详解

0.导入库

import torch
from torch import nn
from d2l import torch as d2l
  • 1
  • 2
  • 3

1.初始化数据
这里初始化出train_iter test_iter 可以查一下之前的获取Fashion数据集后的数据格式与此对应

n_train, n_test, num_inputs, batch_size = 20, 100, 200, 5
true_w, true_b = torch.ones((num_inputs, 1)) * 0.01, 0.05
train_data = d2l.synthetic_data(true_w, true_b, n_train)
train_iter = d2l.load_array(train_data, batch_size)
test_data = d2l.synthetic_data(true_w, true_b, n_test)
test_iter = d2l.load_array(test_data, batch_size, is_train=False)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

2.简洁实现

这补充个多层的写法
optimizer = torch.optim.SGD([
{“params”: net[0].weight, “weight_decay”: wd},
{“params”: net[0].bias},
{“params”: net[1].weight, “weight_decay”: wd},
{“params”: net[1].bias},
{“params”: net[2].weight, “weight_decay”: wd},
{“params”: net[2].bias}
], lr=lr)

def train_concise(wd):
    #定义了一层线性层模型,输入特征个数是num_inputs(怎么来的?) 输出个数是1
    net=nn.Sequential(nn.Linear(num_inputs,1)) 
    for param in net.parameters():
        #初始化w,b 按照(均值为0,方差为1)来初始化,b会被随机初始化为较小的值
        param.data.normal_()

    #定义损失函数
    loss=nn.MSELoss(reduction='none')
    num_epochs,lr=100,0.03

    #定义优化器(这里开始设置限制w^2对于损失函数的影响大小了 -> wd)
    #这段代码包含了神经网络第一层的所有参数,并且为这些参数应用了不同的设置或限制
    #因为这个模型只有一层
    trainer=torch.optim.SGD([
        {"params":net[0].weight,'weight_decay': wd},
        {"params":net[0].bias}], lr=lr)
    #x轴是epochs y轴是loss 
    #x轴设置范围从第五轮到 最后一轮  y轴设置对数标度 对数标度:对原始数据进行对数变换后显示的
    #legend=['train', 'test']: 这为图表设置了图例,标识两条曲线分别代表训练集("train")和测试集("test")的损失值
    animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log',
                            xlim=[5, num_epochs], legend=['train', 'test'])

    for epoch in range(num_epochs):
        for X, y in train_iter:
            trainer.zero_grad()
            l = loss(net(X), y)
            l.mean().backward()
            trainer.step()
        if (epoch + 1) % 5 == 0:
        #相当于在animator增加数据点 epoch,训练平均损失,测试平均损失
            animator.add(epoch + 1,
                         (d2l.evaluate_loss(net, train_iter, loss),
                          d2l.evaluate_loss(net, test_iter, loss)))
    print('w的L2范数:', net[0].weight.norm().item())
    

#开始测试
train_concise(0)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39

重点理解

1.权重衰减是怎么做到的:
Loss=Loss+lamb/2 * (w^2)
当w越大Loss越大,Loss越大,越要减小,也同时减小w
在这里插入图片描述

2.原理:
多个函数下如何算最值

3.代码实现:
trainer=torch.optim.SGD([
{“params”:net[0].weight,‘weight_decay’: wd},
{“params”:net[0].bias}], lr=lr)

参考视频:
https://www.bilibili.com/video/BV1Z44y147xA/?spm_id_from=333.999.0.0&vd_source=302f06b1d8c88e3138547635c3f4de52

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小小林熬夜学编程/article/detail/298360
推荐阅读
相关标签
  

闽ICP备14008679号