赞
踩
损失函数(loss function)用来表示当前的神经网络对训练数据不拟合的程度。这个损失函数有很多,但是一般使用均方误差和交叉熵误差等。
先来看一下表达式:
用python实现:
- def MSE(y, t):
- return 0.5 * np.sum((y - t)**2)
使用这个函数来具体计算以下:
- t = [0, 1, 0, 0]
- y = [0.1, 0.05, 0.05, 0.8]
- print(MSE(np.array(y), np.array(t)))
-
-
- t = [0, 1, 0, 0]
- y = [0.1, 0.8, 0.05, 0.05]
- print(MSE(np.array(y), np.array(t)))
输出结果为:
这里正确标签用one-hot编码,y用softmax输出表示。第一个例子的正确标签为2,对应的概率为0.05,第二个例子对应标签为0.8.可以发现第二个例子的损失函数的值更小,和训练数据更吻合。
除了均方误差之外,交叉熵误差也常被用做损失函数。表达式为:
这里,log表示以e为底的自然对数(
自然对数的图像为:
所以输出的概率越大对应损失函数的值越低。
代码实现交叉熵误差:
- def cross_entropy_error(y, t):
- delta = 1e-7
- return -np.sum(t * np.log(y + delta))
这里设置delta,是因为当出现log(0)时,np.log(0)会变为负无穷大。所以添加一个微小值可以防止负无穷大的发生。
还用刚刚那个例子:
- t = [0, 1, 0, 0]
- y = [0.1, 0.05, 0.05, 0.8]
- print(cross_entropy_error(np.array(y), np.array(t)))
-
-
- t = [0, 1, 0, 0]
- y = [0.1, 0.8, 0.05, 0.05]
- print(cross_entropy_error(np.array(y), np.array(t)))
输出为:
可以看出输出值的概率越大损失值就越小。
前面介绍了损失函数的实现都是针对单个数据。如果要求所有训练数据的损失函数的总和,以交叉熵为例,可以写成下面的式子:
这里,假设数据有N个,
通过除以N,可以求单个数据的“平均损失函数”。通过这样的平均化,可以获得和训练数据的数量无关的统一指标。比如,即使训练数据有100或1000个,也可以求得单个数据的平均损失函数。
所以对之前计算单个数据交叉熵进行改进,可以同时处理单个数据和批量数据:
- def cross_entropy_error(y, t):
- if y.ndim == 1:
- t = t.reshape(1, t.size)
- y = y.reshape(1, y.size)
-
- batch_size = y.shape[0]
- delta = 1e-7
- return -np.sum(t * np.log(y + delta)) / batch_size
但是,对于训练数据不是one-hot表示,而是普通标签表示怎么办呢(例如一批处理5个数据的标签值为[2,5,7,3,4])。输出的数组是5行N列的,这里以手写数字识别为例所以N=10。所以我们计算的交叉熵误差其实计算的是对应每一行,其中某一列的对数之和。例如标签值[2,5,7,3,4],选择的是输出结果的第一行第2个,第二行第5个,第三行第7个...可能表达的不是很清楚,看下代码实现应该好多了。
- def cross_entropy_error(y, t):
- if y.ndim == 1:
- t = t.reshape(1, t.size)
- y = y.reshape(1, y.size)
-
- batch_size = y.shape[0]
- delta = 1e-7
- return -np.sum(np.log(y[np.arange(batch_size), t] + delta)) / batch_size
也就是说,这里的标签值是作为输出数组的索引,用于定位。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。