赞
踩
我根据自己的入门和工作经验,总结了一份超详细的保姆级深度学习从零入门路线,分享给大家;
整个路线分为五个部分:
1.基础知识学习
首先,我们来看基础知识部分;
你需要掌握两个方面;第一个是数学,第二个是Python面向对象编程的基础;
首先对于数学来讲,我想很多搜索入门路线图的朋友,都会被推荐很多数学方面的大部头的书籍和视频和科目,比如说:微积分、线性代数、概率论、复变函数、数值计算等等;
我觉得如果当前的任务是入门,而不是做一些开创性的研究,这些并不全是没有必要;
从我的建议来说,首先掌握线性代数里面的:向量、矩阵、运算、范数、特征向量和特征值;
第二个基础知识是Python;
Python是一种编程语言,是我们后面机器学习和深度学习中数据处理,实现模型的主力语言;
对于Python而言,不需要你很精通,只需要有一定的Python 面向对象编程的的基础就可以;
机器学习理论入门
对于机器学习理论算法,我推荐一本书籍:李航的统计学习
第一,作为入门选手,不要每章都去看;
第二,不要用python从零去造轮子去实现这本书里面的算法,千万不要这样做,太浪费时间;
第三个,对于重点章节算法必须能做到手推公式,重点算法其实不多。
机器学习竞赛实战
然后重点来了,理论部分看完了,也用sklearn做简单的代码实践了,接下来做什么呢?要把这些算法用到实践中去;
也就是我要谈的机器学习竞赛代码实战:在这里,我只推荐一本书,叫做:
阿里云天池大赛赛题解析——机器学习篇;
记住啊,是机器学习篇,不是深度学习篇;
我先说这本书要不要买:首先我自己是买了这本书,但是我发现书很厚,但是有大量的代码占据了很大篇幅;后来发现代码在天池上已经开源了,所以买完之后有一点点后悔;不过就全当为知识付费了;
拿你们要不要买呢?我觉得没啥必要,反正代码是开源的,一会我告诉链接;不过要想支持一下书的作者的话,可以买一本支持一下;就不要下次一定了。
深度学习理论学习
我把深度学习的入门仿照机器学习,也分为两个部分,先学理论,再实战打比赛;
其实说心里话,深度学习入门比机器学习入门要简单的多;
我们都知道深度这块主要就是分为NLP和CV;
NLP任务上大概可以分为四种:文本分类 文本匹配 序列标注 文本生成,
CV任务大致也可以分为图像理解和生成:理解这块大致可以分为:分类、检测、分割、追踪; 生成这块基本就是GAN模型
对于入门来说,我们不用学这么多,我们只需要学籍基础的神经网络,然后通过文本分类和图片分类任务去熟悉掌握整个徐娜林和预测流程,比如数据处理,模型搭建等呢吧;
所以我推荐的这两门课程也是很出名的:
就是大家常说的cs231n 和CS224n;
免费分享一些我整理的人工智能学习资料给大家,整理了很久,非常全面。包括一些人工智能基础入门视频+AI常用框架实战视频、图像识别、OpenCV、NLQ、YOLO、机器学习、pytorch、计算机视觉、深度学习与神经网络等视频、课件源码、国内外知名精华资源、AI热门论文等。
下面是部分截图,点击文末名片关注我的公众号【AI技术星球】发送暗号 321 领取(一定要发暗号 321)
目录
一、人工智能免费视频课程和项目
二、人工智能必读书籍
三、人工智能论文合集
四、机器学习+计算机视觉基础算法教程
五、深度学习机器学习速查表(共26张)
学好人工智能,要多看书,多动手,多实践,要想提高自己的水平,一定要学会沉下心来慢慢的系统学习,最终才能有所收获。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。