赞
踩
最长回文子串这个题目卡了很久。还是要多学习一个STL。
最长回文子串同理,记录长度即可。同时注意扩散法的边界和起止条件。
动规五部曲:
布尔类型的dp[i][j]:表示区间范围[i,j] (注意是左闭右闭)的子串是否是回文子串,如果是dp[i][j]为true,否则为false。
在确定递推公式时,就要分析如下几种情况。
整体上是两种,就是s[i]与s[j]相等,s[i]与s[j]不相等这两种。
当s[i]与s[j]不相等,那没啥好说的了,dp[i][j]一定是false。
当s[i]与s[j]相等时,这就复杂一些了,有如下三种情况
以上三种情况分析完了,那么递归公式如下:
if (s[i] == s[j]) {
if (j - i <= 1) { // 情况一 和 情况二
result++;
dp[i][j] = true;
} else if (dp[i + 1][j - 1]) { // 情况三
result++;
dp[i][j] = true;
}
}
result就是统计回文子串的数量。
注意这里我没有列出当s[i]与s[j]不相等的时候,因为在下面dp[i][j]初始化的时候,就初始为false。
dp[i][j]可以初始化为true么? 当然不行,怎能刚开始就全都匹配上了。
所以dp[i][j]初始化为false。
遍历顺序可有有点讲究了。
首先从递推公式中可以看出,情况三是根据dp[i + 1][j - 1]是否为true,在对dp[i][j]进行赋值true的。
dp[i + 1][j - 1] 在 dp[i][j]的左下角,如图:
如果这矩阵是从上到下,从左到右遍历,那么会用到没有计算过的dp[i + 1][j - 1],也就是根据不确定是不是回文的区间[i+1,j-1],来判断了[i,j]是不是回文,那结果一定是不对的。
所以一定要从下到上,从左到右遍历,这样保证dp[i + 1][j - 1]都是经过计算的。
有的代码实现是优先遍历列,然后遍历行,其实也是一个道理,都是为了保证dp[i + 1][j - 1]都是经过计算的。
代码如下:
for (int i = s.size() - 1; i >= 0; i--) { // 注意遍历顺序
for (int j = i; j < s.size(); j++) {
if (s[i] == s[j]) {
if (j - i <= 1) { // 情况一 和 情况二
result++;
dp[i][j] = true;
} else if (dp[i + 1][j - 1]) { // 情况三
result++;
dp[i][j] = true;
}
}
}
}
举例,输入:“aaa”,dp[i][j]状态如下:
图中有6个true,所以就是有6个回文子串。
注意因为dp[i][j]的定义,所以j一定是大于等于i的,那么在填充dp[i][j]的时候一定是只填充右上半部分。
以上分析完毕,C++代码如下:
class Solution { public: int countSubstrings(string s) { vector<vector<bool>> dp(s.size(), vector<bool>(s.size(), false)); int result = 0; for (int i = s.size() - 1; i >= 0; i--) { // 注意遍历顺序 for (int j = i; j < s.size(); j++) { if (s[i] == s[j]) { if (j - i <= 1) { // 情况一 和 情况二 result++; dp[i][j] = true; } else if (dp[i + 1][j - 1]) { // 情况三 result++; dp[i][j] = true; } } } } return result; } };
动态规划的空间复杂度是偏高的,我们再看一下双指针法。
首先确定回文串,就是找中心然后向两边扩散看是不是对称的就可以了。
在遍历中心点的时候,要注意中心点有两种情况。
一个元素可以作为中心点,两个元素也可以作为中心点。
那么有人同学问了,三个元素还可以做中心点呢。其实三个元素就可以由一个元素左右添加元素得到,四个元素则可以由两个元素左右添加元素得到。
所以我们在计算的时候,要注意一个元素为中心点和两个元素为中心点的情况。
这两种情况可以放在一起计算,但分别计算思路更清晰,我倾向于分别计算,代码如下:
class Solution { public: int countSubstrings(string s) { int result = 0; for (int i = 0; i < s.size(); i++) { result += extend(s, i, i, s.size()); // 以i为中心 result += extend(s, i, i + 1, s.size()); // 以i和i+1为中心 } return result; } int extend(const string& s, int i, int j, int n) { int res = 0; while (i >= 0 && j < n && s[i] == s[j]) { i--; j++; res++; } return res; } };
注意子序列不需要连续,而且只求最大长度,所以可以直接将长度放进dp数组里。
回文子串是要连续的,回文子序列可不是连续的! 回文子串,回文子序列都是动态规划经典题目。
思路其实是差不多的,但本题要比求回文子串简单一点,因为情况少了一点。
动规五部曲分析如下:
dp[i][j]:字符串s在[i, j]范围内最长的回文子序列的长度为dp[i][j]。
在判断回文子串的题目中,关键逻辑就是看s[i]与s[j]是否相同。
如果s[i]与s[j]相同,那么dp[i][j] = dp[i + 1][j - 1] + 2;
(如果这里看不懂,回忆一下dp[i][j]的定义)
如果s[i]与s[j]不相同,说明s[i]和s[j]的同时加入 并不能增加[i,j]区间回文子串的长度,那么分别加入s[i]、s[j]看看哪一个可以组成最长的回文子序列。
加入s[j]的回文子序列长度为dp[i + 1][j]。
加入s[i]的回文子序列长度为dp[i][j - 1]。
那么dp[i][j]一定是取最大的,即:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
代码如下:
if (s[i] == s[j]) {
dp[i][j] = dp[i + 1][j - 1] + 2;
} else {
dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
}
首先要考虑当i 和j 相同的情况,从递推公式:dp[i][j] = dp[i + 1][j - 1] + 2; 可以看出 递推公式是计算不到 i 和j相同时候的情况。
所以需要手动初始化一下,当i与j相同,那么dp[i][j]一定是等于1的,即:一个字符的回文子序列长度就是1。
其他情况dp[i][j]初始为0就行,这样递推公式:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]); 中dp[i][j]才不会被初始值覆盖。
vector<vector<int>> dp(s.size(), vector<int>(s.size(), 0));
for (int i = 0; i < s.size(); i++) dp[i][i] = 1;
从递推公式dp[i][j] = dp[i + 1][j - 1] + 2 和 dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]) 可以看出,dp[i][j]是依赖于dp[i + 1][j - 1] 和 dp[i + 1][j],
也就是从矩阵的角度来说,dp[i][j] 下一行的数据。 所以遍历i的时候一定要从下到上遍历,这样才能保证,下一行的数据是经过计算的。
递推公式:dp[i][j] = dp[i + 1][j - 1] + 2,dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]) 分别对应着下图中的红色箭头方向,如图:
代码如下:
for (int i = s.size() - 1; i >= 0; i--) {
for (int j = i + 1; j < s.size(); j++) {
if (s[i] == s[j]) {
dp[i][j] = dp[i + 1][j - 1] + 2;
} else {
dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
}
}
}
输入s:“cbbd” 为例,dp数组状态如图:
红色框即:dp[0][s.size() - 1]; 为最终结果。
以上分析完毕,C++代码如下:
class Solution { public: int longestPalindromeSubseq(string s) { vector<vector<int>> dp(s.size(), vector<int>(s.size(), 0)); for (int i = 0; i < s.size(); i++) dp[i][i] = 1; for (int i = s.size() - 1; i >= 0; i--) { for (int j = i + 1; j < s.size(); j++) { if (s[i] == s[j]) { dp[i][j] = dp[i + 1][j - 1] + 2; } else { dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]); } } } return dp[0][s.size() - 1]; } };
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。