当前位置:   article > 正文

TensorFlow搭建LSTM实现多变量多步长时间序列预测(二):单步滚动预测_lstm多步预测

lstm多步预测

I. 前言

TensorFlow搭建LSTM实现多变量多步长时间序列预测(一):直接多输出中介绍了直接单输出的多步预测,本篇文章主要介绍单步滚动预测实现多步预测。

系列文章:

  1. 深入理解PyTorch中LSTM的输入和输出(从input输入到Linear输出)
  2. PyTorch搭建LSTM实现时间序列预测(负荷预测)
  3. PyTorch中利用LSTMCell搭建多层LSTM实现时间序列预测
  4. PyTorch搭建LSTM实现多变量时间序列预测(负荷预测)
  5. PyTorch搭建双向LSTM实现时间序列预测(负荷预测)
  6. PyTorch搭建LSTM实现多变量多步长时间序列预测(一):直接多输出
  7. PyTorch搭建LSTM实现多变量多步长时间序列预测(二):单步滚动预测
  8. PyTorch搭建LSTM实现多变量多步长时间序列预测(三):多模型单步预测
  9. PyTorch搭建LSTM实现多变量多步长时间序列预测(四):多模型滚动预测
  10. PyTorch搭建LSTM实现多变量多步长时间序列预测(五):seq2seq
  11. PyTorch中实现LSTM多步长时间序列预测的几种方法总结(负荷预测)
  12. PyTorch-LSTM时间序列预测中如何预测真正的未来值
  13. PyTorch搭建LSTM实现多变量输入多变量输出时间序列预测(多任务学习)
  14. PyTorch搭建ANN实现时间序列预测(风速预测)
  15. PyTorch搭建CNN实现时间序列预测(风速预测)
  16. PyTorch搭建CNN-LSTM混合模型实现多变量多步长时间序列预测(负荷预测)
  17. PyTorch搭建Transformer实现多变量多步长时间序列预测(负荷预测)
  18. PyTorch时间序列预测系列文章总结(代码使用方法)
  19. TensorFlow搭建LSTM实现时间序列预测(负荷预测)
  20. TensorFlow搭建LSTM实现多变量时间序列预测(负荷预测)
  21. TensorFlow搭建双向LSTM实现时间序列预测(负荷预测)
  22. TensorFlow搭建LSTM实现多变量多步长时间序列预测(一):直接多输出
  23. TensorFlow搭建LSTM实现多变量多步长时间序列预测(二):单步滚动预测
  24. TensorFlow搭建LSTM实现多变量多步长时间序列预测(三):多模型单步预测
  25. TensorFlow搭建LSTM实现多变量多步长时间序列预测(四):多模型滚动预测
  26. TensorFlow搭建LSTM实现多变量多步长时间序列预测(五):seq2seq
  27. TensorFlow搭建LSTM实现多变量输入多变量输出时间序列预测(多任务学习)
  28. TensorFlow搭建ANN实现时间序列预测(风速预测)
  29. TensorFlow搭建CNN实现时间序列预测(风速预测)
  30. TensorFlow搭建CNN-LSTM混合模型实现多变量多步长时间序列预测(负荷预测)
  31. PyG搭建图神经网络实现多变量输入多变量输出时间序列预测
  32. PyTorch搭建GNN-LSTM和LSTM-GNN模型实现多变量输入多变量输出时间序列预测
  33. PyG Temporal搭建STGCN实现多变量输入多变量输出时间序列预测
  34. 时序预测中Attention机制是否真的有效?盘点LSTM/RNN中24种Attention机制+效果对比
  35. 详解Transformer在时序预测中的Encoder和Decoder过程:以负荷预测为例
  36. (PyTorch)TCN和RNN/LSTM/GRU结合实现时间序列预测
  37. PyTorch搭建Informer实现长序列时间序列预测
  38. PyTorch搭建Autoformer实现长序列时间序列预测

II. 单步滚动预测

比如前10个预测后3个:我们首先利用[1…10]预测[11’],然后利用[2…10 11’]预测[12’],最后再利用[3…10 11’ 12’]预测[13’],也就是为了得到多个预测输出,我们直接预测多次,并且在每次预测时将之前的预测值带入。这种方法的缺点是显而易见的:由于每一步的预测都有误差,将有误差的预测值带入进行预测后往往会造成更大的误差,让误差传递。利用这种方式预测到后面通常预测值就完全不变了。

III. 代码实现

3.1 数据处理

我们根据前24个时刻的负荷以及该时刻的环境变量来预测接下来12个时刻的负荷(步长pred_step_size可调)。

3.2 模型搭建

模型和之前的文章一致:

class LSTM(keras.Model):
    def __init__(self, args):
        super(LSTM, self).__init__()
        self.lstm = Sequential()
        for i in range(args.num_layers):
            self.lstm.add(layers.LSTM(units=args.hidden_size, input_shape=(args.seq_len, args.input_size),
                                      activation='tanh', return_sequences=True))
        self.fc1 = layers.Dense(64, activation='relu')
        self.fc2 = layers.Dense(args.output_size)

    def call(self, data, training=None, mask=None):
        x = self.lstm(data)
        x = self.fc1(x)
        x = self.fc2(x)

        return x[:, -1:, :]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

3.3 模型训练/测试

模型训练代码和之前一致,模型滚动测试代码如下:

def ss_rolling_test(args, Dte, path, M):
    if args.bidirectional:
        model = BiLSTM(args)
    else:
        model = LSTM(args)
    model.load_weights(path)
    pred = []
    y = []
    Dte = [x for x in iter(Dte)]
    Dte = list_of_groups(Dte, args.pred_step_size)
    for sub_item in tqdm(Dte):
        sub_pred = []
        for seq_idx, (seq, label) in enumerate(sub_item, 0):
            label = label.numpy().flatten().tolist()
            y.extend(label)
            if seq_idx != 0:
                seq = seq.cpu().numpy().tolist()[0]
                if len(sub_pred) >= len(seq):
                    for t in range(len(seq)):
                        seq[t][0] = sub_pred[len(sub_pred) - len(seq) + t]
                else:
                    for t in range(len(sub_pred)):
                        seq[len(seq) - len(sub_pred) + t][0] = sub_pred[t]
            else:
                seq = seq.cpu().numpy().tolist()[0]
            seq = [seq]
            seq = tf.data.Dataset.from_tensor_slices(seq)
            seq = seq.batch(1, drop_remainder=False).shuffle(1).prefetch(1)
            seq = [x for x in iter(seq)][0]
            y_pred = model(seq)
            y_pred = y_pred.numpy().flatten().tolist()
            sub_pred.extend(y_pred)

        pred.extend(sub_pred)

    y, pred = np.array(y), np.array(pred)
    m, n = M[0], M[1]
    y = (m - n) * y + n
    pred = (m - n) * pred + n
    mape = get_mape(y, pred)
    plot(y, pred)
    print('mape:', mape)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42

简单解释一下上述滚动测试的代码:由于我们是前24个时刻预测未来12个时刻,数据的batch_size我们可以设置为1,然后每12个batch的数据放到一组:

Dte = [x for x in iter(Dte)]
Dte = list_of_groups(Dte, args.pred_step_size)
  • 1
  • 2

其中list_of_groups:

def list_of_groups(data, sub_len):
    groups = zip(*(iter(data),) * sub_len)
    end_list = [list(i) for i in groups]
    count = len(data) % sub_len
    end_list.append(data[-count:]) if count != 0 else end_list
    return end_list
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

list_of_groups的作用是将列表data中的数据每seq_len划分为一组,对应到本文中就是每12个batch的数据为一组。

正式预测时分为两种情况:如果预测的是每组(共12个样本)的第一个样本,那么直接预测,并将预测值保存到sub_pred中。如果不是预测第一个样本且之前已经预测了len个样本,那么就将当前样本对应的后len个负荷值替换为sub_pred中的值:

for sub_item in tqdm(Dte):
    sub_pred = []
    for seq_idx, (seq, label) in enumerate(sub_item, 0):
        label = label.numpy().flatten().tolist()
        y.extend(label)
        if seq_idx != 0:
            seq = seq.cpu().numpy().tolist()[0]
            # 如果当前预测长度已经大于seq,直接用sub_pred的后几个将seq中每个数组的第一个数字替换掉
            if len(sub_pred) >= len(seq):
                for t in range(len(seq)):
                    seq[t][0] = sub_pred[len(sub_pred) - len(seq) + t]
            else:
            	# 否则, seq的后几个用sub_pred代替
                for t in range(len(sub_pred)):
                    seq[len(seq) - len(sub_pred) + t][0] = sub_pred[t]
        else:
        	# 直接预测
            seq = seq.cpu().numpy().tolist()[0]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

3.4 实验结果

训练了30轮,前24个时刻预测未来12个负荷值,单步滚动预测,MAPE为9.48%:
在这里插入图片描述
效果还比较差,需要调调参,后续再更新了。

IV. 源码及数据

后面将陆续公开~

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小小林熬夜学编程/article/detail/481446
推荐阅读
相关标签
  

闽ICP备14008679号