赞
踩
此题是求有多少个区间的平均值>=t, 那么可以把每个值-t。如果新的数列的某个区间的和>=0,那么说明这个区间满足条件。
令新数列的前缀和为b[i],所以求[i, j]区间是否满足条件,即求b[j]-b[i-1]是否>=0,即b[j]>=b[i-1]。
因为j>i>i-1,所以这里即求“伪逆序对”的数量。
逆序对:i>j a[i]<a[j] 伪逆序对/非逆序对:i>j a[i]>a[j]
方法:归并排序
1.8/10代码:错误原因:超时
- #include <bits/stdc++.h>
- using namespace std;
- const long long int N = 1e6 + 10;
- long long int p = 1e9 + 7;
- long long int n, t;
- long long int a[N];
- long long int b[N];
- int main()
- {
- cin >> n >> t;
- for (long long int i = 1; i <= n; i++)
- {
- cin >> a[i];
- a[i] -= t;
- }
- for (long long int i = 1; i <= n; i++)
- {
- b[i] = b[i - 1] + a[i];
- }
- long long int ans = 0;
- for (long long int i = 1; i <= n; i++)
- {
- for (long long int j = 1; j <= i; j++)
- {
- if (b[i] - b[j - 1] >= 0)
- {
- ans++;
- }
- }
- }
- cout << ans % p;
- }
2.10/10代码:升序排列求逆序对,再用总的-逆序对即为非逆序对个数
- #include <bits/stdc++.h>
- using namespace std;
- #define ll long long
- const int N = 1e6 + 10;
- int p = 1e9 + 7;
- ll n, t;
- ll a[N], sum[N], q[N];
- ll ans = 0;
- void merge_sort(int l, int r, ll a[])
- {
- if (l >= r)
- return;
- int mid = (l + r) >> 1;
-
- merge_sort(l, mid, a);
- merge_sort(mid + 1, r, a);
-
- int i = l, j = mid + 1, k = 0;
- while (i <= mid && j <= r)
- {
- if (a[i] > a[j])
- {
- q[k++] = a[j++];
- ans += mid - i + 1; // 升序排列,求逆序数
- ans %= p;
- }
- else
- {
- q[k++] = a[i++];
- }
- }
- while (i <= mid)
- q[k++] = a[i++];
- while (j <= r)
- q[k++] = a[j++];
- for (i = l, j = 0; i <= r; i++, j++)
- {
- a[i] = q[j];
- }
- }
-
- int main()
- {
- cin >> n >> t;
- for (int i = 1; i <= n; i++)
- {
- cin >> a[i];
- a[i] -= t;
- sum[i] = sum[i - 1] + a[i];
- }
- merge_sort(0, n, sum);
- cout << (n * (n + 1) / 2 - ans) % p;
- return 0;
- }
3.10/10代码,直接降序求非逆序对个数
- #include <bits/stdc++.h>
- using namespace std;
- #define ll long long
- const int N = 1e6 + 10;
- int p = 1e9 + 7;
- ll n, t;
- ll a[N], sum[N], q[N];
- ll ans = 0;
- void merge_sort(int l, int r, ll a[])
- {
- if (l >= r)
- return;
- int mid = (l + r) >> 1;
-
- merge_sort(l, mid, a);
- merge_sort(mid + 1, r, a);
-
- int i = l, j = mid + 1, k = 0;
- while (i <= mid && j <= r)
- {
- if (a[i] <= a[j])
- {
- q[k++] = a[j++];
- ans += mid - i + 1; // 降序排列,求非逆序数
- ans %= p;
- }
- else
- {
- q[k++] = a[i++];
- }
- }
- while (i <= mid)
- q[k++] = a[i++];
- while (j <= r)
- q[k++] = a[j++];
- for (i = l, j = 0; i <= r; i++, j++)
- {
- a[i] = q[j];
- }
- }
-
- int main()
- {
- cin >> n >> t;
- for (int i = 1; i <= n; i++)
- {
- cin >> a[i];
- a[i] -= t;
- sum[i] = sum[i - 1] + a[i];
- }
- merge_sort(0, n, sum);
- cout << ans % p;
- return 0;
- }
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。