赞
踩
目录
决策树学习的算法通常是一个递归地选择最优特征,并根据该特征对训练数据进行分割,使得各个子数据集有一个最好的分类的过程。这一过程对应着对特征空间的划分,也对应着决策树的构建。(1) 开始:构建根节点,将所有训练数据都放在根节点,选择一个最优特征,按着这一特征将训练数据集分割成子集,使得各个子集有一个在当前条件下最好的分类。
(2)如果这些子集已经能够被基本正确分类,那么构建叶节点,并将这些子集分到所对应的叶节点去。
(3)如果还有子集不能够被正确的分类,那么就对这些子集选择新的最优特征,继续对其进行分割,构建相应的节点,如果递归进行,直至所有训练数据子集被基本正确的分类,或者没有合适的特征为止。
(4)每个子集都被分到叶节点上,即都有了明确的类,这样就生成了一颗决策树。
决策树的特点:
首先:确定当前数据集上的决定性特征,为了得到该决定性特征,必须评估每个特征,完成测试之后,原始数据集就被划分为几个数据子集,这些数据子集会分布在第一个决策点的所有分支上,如果某个分支下的数据属于同一类型,则当前无序阅读的垃圾邮件已经正确的划分数据分类,无需进一步对数据集进行分割,如果不属于同一类,则要重复划分数据子集,直到所有相同类型的数据均在一个数据子集内。
创建分支的伪代码createBranch()如下图所示:
- If so return 类标签:
- Else
- 寻找划分数据集的最好特征
- 划分数据集
- 创建分支节点
- for 每个划分的子集
- 调用函数createBranch()并增加返回结果到分支节点中
- return 分支节点
使用决策树做预测需要以下过程:
收集数据:可以使用任何方法。比如想构建一个相亲系统,我们可以从媒婆那里,或者通过参访相亲对象获取数据。根据他们考虑的因素和最终的选择结果,就可以得到一些供我们利用的数据了。
准备数据:收集完的数据,我们要进行整理,将这些所有收集的信息按照一定规则整理出来,并排版,方便我们进行后续处理。
分析数据:可以使用任何方法,决策树构造完成之后,我们可以检查决策树图形是否符合预期。
训练算法:这个过程也就是构造决策树,同样也可以说是决策树学习,就是构造一个决策树的数据结构。
测试算法:使用经验树计算错误率。当错误率达到了可接收范围,这个决策树就可以投放使用了。
使用算法:此步骤可以使用适用于任何监督学习算法,而使用决策树可以更好地理解数据的内在含义。
划分数据集的大原则是:将无序数据变得更加有序,但是各种方法都有各自的优缺点,信息论是量化处理信息的分支科学,在划分数据集前后信息发生的变化称为信息增益,获得信息增益最高的特征就是最好的选择,所以必须先学习如何计算信息增益,集合信息的度量方式称为香农熵,或者简称熵。
熵定义为信息的期望值,如果待分类的事物可能划分在多个类之中,则符号的信息定义为:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。