当前位置:   article > 正文

基于Pytorch使用GPU运行模型方法及可能出现的问题解决方法_pytorch怎么用gpu分配内存训练

pytorch怎么用gpu分配内存训练

基于Pytorch使用GPU运行模型方法及注意事项

一、在基于pytorch深度学习进行模型训练和预测的时候,往往数据集比较大,而且模型也可能比较复杂,但如果直接训练调用CPU运行的话,计算运行速度很慢,因此使用GPU进行模型训练和预测是非常有必要的,可以大大提高实验效率。如果还没有配置好运行环境的博友们可以参考下面博主的文章。

1、点击打开《基于Windows中学习Deep Learning之搭建Anaconda+Cudnn+Cuda+Pytorch+Pycharm工具和配置环境完整最简版》文章
2、点击打开《基于Pytorch查看本地或者远程服务器GPU及使用方法》文章

二、具体方法分为两个大部分(模型和数据集)。

  • 首先将模型model移动到cuda设备也就是GPU上,注意:此大模型可以内含多个子模型,子模型无需再重复移动到GPU上
model = Net() # 举例模型
device = torch.device(&
  • 1
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小小林熬夜学编程/article/detail/677403
推荐阅读
相关标签
  

闽ICP备14008679号