赞
踩
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
SparkSQL: Spark Sql 是Spark来操作结构化数据的程序包,可以让我使用SQL语句的方式来查询数据,Spark支持多种数据源,包含Hive表,parquest以及JSON等内容
SparkStreaming: 是Spark提供的实时数据进行流式计算的组件
**MLlib:**提供常用机器学习算法的实现库
**GraphX:**提供一个分布式图计算框架,能高效进行图计算
**BlinkDB:**用于在海量数据上进行交互式SQL的近似查询引擎
**Tachyon:**以内存为中心高容错的分布式文件系统
淘宝使用Spark来解决多次迭代的机器学习算法、高计算复杂度的算法等。应用于内容推荐,社区发现等
RDD叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变,可分区,里面的元素可并行计算的集合。RDD具有数据流模型的特点:自动容错,位置感知性调度和可伸缩性。RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续地查询能够重用工作集,这极大地提升了查询速度。
(1) 一组分片,即数据集的基本组成单位。对于RDD来说,每个分片都会被一个计算任务处理,并决定并行计算的粒度。
(2)一个计算每个分区的函数。Spark中的RDD的计算以分片为单位的,每个RDD都会实现compute函数以达到这个目的。
(3)RDD之间的依赖关系。RDD的每次转换都会生成一个新的RDD,所以RDD之间就会形成类似于流水线一样的前后依赖关系。部分分区数据丢失时,Spark可以通过这个依赖关系重新计算对视的分区数据,而不是对RDD的所有分区进行重新计算。
(4)一个Partitioner,即RDD的分片函数。当前Spark中实现了两种类型的分片函数,一个是基于哈希的,另一个是基于范围的
(5)一个列表,存储存取每个Partition(分片)的优先位置。对于一个HDFS文件来说,这个列表保存的就是每个Partition所在的块的位置。
由外部存储系统的数据集创建,包括本地的文件系统,还有所有Hadoop支持的数据集,比如HDFS、Cassandra、HBase等
scala> val file = sc.textFile("/spark/hello.txt")
由一个已经存在的Scala集合创建
scala> val array = Array(1,2,3,4,5)
array: Array[Int] = Array(1, 2, 3, 4, 5)
scala> val rdd = sc.parallelize(array)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[27] at parallelize at <console>:26
读取数据库等等其他的操作。也可以生成RDD。
RDD可以通过其他的RDD转换而来的。
Spark支持两个类型(算子)操作:Transformation和Action
主要做的是就是将一个已有的RDD生成另外一个RDD。Transformation具有lazy特性(延迟加载)。Transformation算子的代码不会真正被执行。只有当我们的程序里面遇到一个action算子的时候,代码才会真正的被执行。这种设计让Spark更加有效率地运行。
常用的Transformation:
转换 | 含义 |
---|---|
map(func) | 返回一个新的RDD,该RDD由每一个输入元素经过func函数转换后组成 |
filter(func) | 返回一个新的RDD,该RDD由经过func函数计算后返回值为true的输入元素组成 |
flatMap(func) | 类似于map,但是每一个输入元素可以被映射为0或多个输出元素(所以func应该返回一个序列,而不是单一元素) |
union(otherDataset) | 对源RDD和参数RDD求并集后返回一个新的RDD |
groupByKey([numTasks]) | 在一个(K,V)的RDD上调用,返回一个(K, Iterator[V])的RD |
sortByKey | 在一个(K,V)的RDD上调用,K必须实现Ordered接口,返回一个按照key进行排序的(K,V)的RDD |
官方很全面,这里只做了解。 |
触发代码的运行,我们一段spark代码里边至少需要有一个action操作
常用的Action:
动作 | 含义 |
---|---|
reduce(func) | 通过func函数聚集RDD中的所有元素,这个功能必须是课交换且可并联的 |
collect() | 在驱动程序中,以数组的形式返回数据集的所有元素 |
count() | 返回RDD的元素个数 |
first() | 返回RDD的第一个元素(类似于take(1)) |
foreach(func) | 在数据集的每一个元素上,运行函数func进行更新。 |
此处只是列举几个,更为全面的去查看官方文档 |
使用maven进行项目搭建
查看官方文档,导入2个依赖包
详细代码-scala
import org.apache.spark.rdd.RDD import org.apache.spark.{SparkConf, SparkContext} object SparkWordCountWithScala { def main(args: Array[String]): Unit = { val conf = new SparkConf() /\*\* \* 如果这个参数不设置,默认认为你运行的是集群模式 \* 如果设置成local代表运行的是local模式 \*/ conf.setMaster("local") //设置任务名 conf.setAppName("WordCount") //创建SparkCore的程序入口 val sc = new SparkContext(conf) //读取文件 生成RDD val file: RDD[String] = sc.textFile("E:\\hello.txt") //把每一行数据按照,分割 val word: RDD[String] = file.flatMap(_.split(",")) //让每一个单词都出现一次 val wordOne: RDD[(String, Int)] = word.map((_,1)) //单词计数 val wordCount: RDD[(String, Int)] = wordOne.reduceByKey(_+_) //按照单词出现的次数 降序排序 val sortRdd: RDD[(String, Int)] = wordCount.sortBy(tuple => tuple._2,false) //将最终的结果进行保存 sortRdd.saveAsTextFile("E:\\result") sc.stop() }
详细代码-jdk8
import org.apache.spark.rdd.RDD import org.apache.spark.{SparkConf, SparkContext} ![img](https://img-blog.csdnimg.cn/img_convert/0ca47bf6b3a28c8239b35f784359121b.png) ![img](https://img-blog.csdnimg.cn/img_convert/e3835dad37c587c0cd630662d658b3fc.png) **网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。** **[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)** **一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!** 如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。** **[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)** **一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。