当前位置:   article > 正文

自动驾驶 PointNet++ 点云处理原理与代码实战 1(代码部分)_pointnet++代码

pointnet++代码

PointNet 模型代码详解

在这里插入图片描述
整个模型概览图
下面分部分的代码:
在这里插入图片描述
在这里插入图片描述

import torch.utils.data
from torch.autograd import Variable
import numpy as np
import torch.nn.functional as F

# STN3d: T-Net 3*3 transform
# 类似一个mini-PointNet
class STN3d(nn.Module):
    def __init__(self, channel):
        super(STN3d, self).__init__()
        # torch.nn.Conv1d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)
        self.conv1 = torch.nn.Conv1d(channel, 64, 1)
        self.conv2 = torch.nn.Conv1d(64, 128, 1)
        self.conv3 = torch.nn.Conv1d(128, 1024, 1)
        self.fc1 = nn.Linear(1024, 512)
        self.fc2 = nn.Linear(512, 256)
        self.fc3 = nn.Linear(256, 9) # 9=3*3
        self.relu = nn.ReLU()

        self.bn1 = nn.BatchNorm1d(64)
        self.bn2 = nn.BatchNorm1d(128)
        self.bn3 = nn.BatchNorm1d(1024)
        self.bn4 = nn.BatchNorm1d(512)
        self.bn5 = nn.BatchNorm1d(256)

    def forward(self, x):
        batchsize = x.size()[0]
        x = F.relu(self.bn1(self.conv1(x)))
        x = F.relu(self.bn2(self.conv2(x)))
        x = F.relu(self.bn3(self.conv3(x)))
        # Symmetric function: max pooling
        x = torch.max(x, 2, keepdim=True)[0]
        # x参数展平(拉直)
        x = x.view(-1, 1024)

        x = F.relu(self.bn4(self.fc1(x)))
        x = F.relu(self.bn5(self.fc2(x)))
        x = self.fc3(x)

        # 展平的对角矩阵:np.array([1, 0, 0, 0, 1, 0, 0, 0, 1])
        iden = Variable(torch.from_numpy(np.array([1, 0, 0, 0, 1, 0, 0, 0, 1]).astype(np.float32))).view(1, 9).repeat(
            batchsize, 1)
        if x.is_cuda:
            iden = iden.cuda()
        x = x + iden # affine transformation
        # 用view,转换成batchsize*3*3的数组
        x = x.view(-1, 3, 3)
        return x
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48

在这里插入图片描述


# STNkd: T-Net 64*64 transform,k默认是64
class STNkd(nn.Module):
    def __init__(self, k=64):
        super(STNkd, self).__init__()
        self.conv1 = torch.nn.Conv1d(k, 64, 1)
        self.conv2 = torch.nn.Conv1d(64, 128, 1)
        self.conv3 = torch.nn.Conv1d(128, 1024, 1)
        self.fc1 = nn.Linear(1024, 512)
        self.fc2 = nn.Linear(512, 256)
        self.fc3 = nn.Linear(256, k * k)
        self.relu = nn.ReLU()

        self.bn1 = nn.BatchNorm1d(64)
        self.bn2 = nn.BatchNorm1d(128)
        self.bn3 = nn.BatchNorm1d(1024)
        self.bn4 = nn.BatchNorm1d(512)
        self.bn5 = nn.BatchNorm1d(256)

        self.k = k

    def forward(self, x):
        batchsize = x.size()[0]
        x = F.relu(self.bn1(self.conv1(x)))
        x = F.relu(self.bn2(self.conv2(x)))
        x = F.relu(self.bn3(self.conv3(x)))
        # Symmetric function: max pooling
        x = torch.max(x, 2, keepdim=True)[0]
        # 参数拉直(展平)
        x = x.view(-1, 1024)

        x = F.relu(self.bn4(self.fc1(x)))
        x = F.relu(self.bn5(self.fc2(x)))
        x = self.fc3(x)

        # 展平的对角矩阵 
        iden = Variable(torch.from_numpy(np.eye(self.k).flatten().astype(np.float32))).view(1, self.k * self.k).repeat(
            batchsize, 1)
        if x.is_cuda:
            iden = iden.cuda()
        x = x + iden # affine transformation
        x = x.view(-1, self.k, self.k)
        return x
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43

在这里插入图片描述


# PointNet编码器
class PointNetEncoder(nn.Module):
    def __init__(self, global_feat=True, feature_transform=False, channel=3):
        super(PointNetEncoder, self).__init__()

        self.stn = STN3d(channel) # STN3d: T-Net 3*3 transform
        self.conv1 = torch.nn.Conv1d(channel, 64, 1)
        self.conv2 = torch.nn.Conv1d(64, 128, 1)
        self.conv3 = torch.nn.Conv1d(128, 1024, 1)
        self.bn1 = nn.BatchNorm1d(64)
        self.bn2 = nn.BatchNorm1d(128)
        self.bn3 = nn.BatchNorm1d(1024)
        self.global_feat = global_feat
        self.feature_transform = feature_transform
        if self.feature_transform:
            self.fstn = STNkd(k=64) # STNkd: T-Net 64*64 transform

    def forward(self, x):
        B, D, N = x.size() # batchsize,3(xyz坐标)或6(xyz坐标+法向量),1024(一个物体所取的点的数目)
        trans = self.stn(x) # STN3d T-Net
        x = x.transpose(2, 1) # 交换一个tensor的两个维度
        if D >3 :
            x, feature = x.split(3,dim=2)
        # 对输入的点云进行输入转换(input transform)    
        # input transform: 计算两个tensor的矩阵乘法
        # bmm是两个三维张量相乘, 两个输入tensor维度是(b×n×m)和(b×m×p), 
        # 第一维b代表batch size,输出为(b×n×p)
        x = torch.bmm(x, trans)
        if D > 3:
            x = torch.cat([x,feature],dim=2) 
        x = x.transpose(2, 1)
        x = F.relu(self.bn1(self.conv1(x))) # MLP

        if self.feature_transform:
            trans_feat = self.fstn(x) # STNkd T-Net
            x = x.transpose(2, 1)
            # 对输入的点云进行特征转换(feature transform)
            # feature transform: 计算两个tensor的矩阵乘法
            x = torch.bmm(x, trans_feat)
            x = x.transpose(2, 1)
        else:
            trans_feat = None

        pointfeat = x # 局部特征
        x = F.relu(self.bn2(self.conv2(x))) # MLP
        x = self.bn3(self.conv3(x)) # MLP
        x = torch.max(x, 2, keepdim=True)[0] # 最大池化得到全局特征
        x = x.view(-1, 1024) # 展平
        if self.global_feat: # 需要返回的是否是全局特征?
            return x, trans, trans_feat # 返回全局特征
        else:
            x = x.view(-1, 1024, 1).repeat(1, 1, N)
            # 返回局部特征与全局特征的拼接
            return torch.cat([x, pointfeat], 1), trans, trans_feat

# 对特征转换矩阵做正则化:
# constrain the feature transformation matrix to be close to orthogonal matrix
def feature_transform_reguliarzer(trans):
    d = trans.size()[1]
    I = torch.eye(d)[None, :, :] # torch.eye(n, m=None, out=None) 返回一个2维张量,对角线位置全1,其它位置全0
    if trans.is_cuda:
        I = I.cuda()
        
    # 正则化损失函数
    loss = torch.mean(torch.norm(torch.bmm(trans, trans.transpose(2, 1) - I), dim=(1, 2))) 
    return loss

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68

PointNet++ 点云处理任务的代码

PointNet++ 物体形状分类代码

import torch.nn as nn
import torch.utils.data
import torch.nn.functional as F
from pointnet import PointNetEncoder, feature_transform_reguliarzer

class get_model(nn.Module):
    def __init__(self, k=40, normal_channel=True):
        super(get_model, self).__init__()
        if normal_channel:
            channel = 6
        else:
            channel = 3
        self.feat = PointNetEncoder(global_feat=True, feature_transform=True, channel=channel)
        self.fc1 = nn.Linear(1024, 512)
        self.fc2 = nn.Linear(512, 256)
        self.fc3 = nn.Linear(256, k)
        self.dropout = nn.Dropout(p=0.4)
        self.bn1 = nn.BatchNorm1d(512)
        self.bn2 = nn.BatchNorm1d(256)
        self.relu = nn.ReLU()

    def forward(self, x):
        x, trans, trans_feat = self.feat(x)
        x = F.relu(self.bn1(self.fc1(x)))
        x = F.relu(self.bn2(self.dropout(self.fc2(x))))
        x = self.fc3(x)
        x = F.log_softmax(x, dim=1) # 计算对数概率
        return x, trans_feat

class get_loss(torch.nn.Module):
    def __init__(self, mat_diff_loss_scale=0.001):
        super(get_loss, self).__init__()
        self.mat_diff_loss_scale = mat_diff_loss_scale

    def forward(self, pred, target, trans_feat):
        # NLLLoss的输入是一个对数概率向量和一个目标标签. 它不会计算对数概率. 
        # 适合网络的最后一层是log_softmax. 
        # 损失函数 nn.CrossEntropyLoss()与NLLLoss()相同, 唯一的不同是它去做softmax.
        loss = F.nll_loss(pred, target) # 分类损失
        mat_diff_loss = feature_transform_reguliarzer(trans_feat) #特征变换正则化损失

        # 总的损失函数
        total_loss = loss + mat_diff_loss * self.mat_diff_loss_scale
        return total_loss

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45

PointNet++ 部件分割代码

在这里插入图片描述

import torch
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
import torch.nn.functional as F
from pointnet import STN3d, STNkd, feature_transform_reguliarzer


class get_model(nn.Module):
    def __init__(self, part_num=50, normal_channel=True):
        super(get_model, self).__init__()
        if normal_channel: # 是否有法向量信息
            channel = 6
        else:
            channel = 3
        self.part_num = part_num # 部件类别数量, ShapeNet中为50
        self.stn = STN3d(channel)
        self.conv1 = torch.nn.Conv1d(channel, 64, 1)
        self.conv2 = torch.nn.Conv1d(64, 128, 1)
        self.conv3 = torch.nn.Conv1d(128, 128, 1)
        self.conv4 = torch.nn.Conv1d(128, 512, 1)
        self.conv5 = torch.nn.Conv1d(512, 2048, 1)
        self.bn1 = nn.BatchNorm1d(64)
        self.bn2 = nn.BatchNorm1d(128)
        self.bn3 = nn.BatchNorm1d(128)
        self.bn4 = nn.BatchNorm1d(512)
        self.bn5 = nn.BatchNorm1d(2048)
        self.fstn = STNkd(k=128)  # 维度为128
        self.convs1 = torch.nn.Conv1d(4944, 256, 1)
        self.convs2 = torch.nn.Conv1d(256, 256, 1)
        self.convs3 = torch.nn.Conv1d(256, 128, 1)
        self.convs4 = torch.nn.Conv1d(128, part_num, 1)
        self.bns1 = nn.BatchNorm1d(256)
        self.bns2 = nn.BatchNorm1d(256)
        self.bns3 = nn.BatchNorm1d(128)

    def forward(self, point_cloud, label):
        B, D, N = point_cloud.size()
        trans = self.stn(point_cloud)
        point_cloud = point_cloud.transpose(2, 1)
        if D > 3:
            point_cloud, feature = point_cloud.split(3, dim=2)
        point_cloud = torch.bmm(point_cloud, trans)
        if D > 3:
            point_cloud = torch.cat([point_cloud, feature], dim=2)

        point_cloud = point_cloud.transpose(2, 1)

        out1 = F.relu(self.bn1(self.conv1(point_cloud)))
        out2 = F.relu(self.bn2(self.conv2(out1)))
        out3 = F.relu(self.bn3(self.conv3(out2)))

        trans_feat = self.fstn(out3)
        x = out3.transpose(2, 1)
        net_transformed = torch.bmm(x, trans_feat)
        net_transformed = net_transformed.transpose(2, 1)

        out4 = F.relu(self.bn4(self.conv4(net_transformed)))
        out5 = self.bn5(self.conv5(out4))
        out_max = torch.max(out5, 2, keepdim=True)[0] # max后为2048个元素
        out_max = out_max.view(-1, 2048)

        out_max = torch.cat([out_max,label.squeeze(1)],1)
        expand = out_max.view(-1, 2048+16, 1).repeat(1, 1, N) # 16个物体类别
        concat = torch.cat([expand, out1, out2, out3, out4, out5], 1) # 局部特征与全局特征拼接
        net = F.relu(self.bns1(self.convs1(concat)))
        net = F.relu(self.bns2(self.convs2(net)))
        net = F.relu(self.bns3(self.convs3(net)))
        net = self.convs4(net)
        net = net.transpose(2, 1).contiguous()
        net = F.log_softmax(net.view(-1, self.part_num), dim=-1)
        net = net.view(B, N, self.part_num) # [B, N, 50]

        return net, trans_feat


class get_loss(torch.nn.Module):
    def __init__(self, mat_diff_loss_scale=0.001):
        super(get_loss, self).__init__()
        self.mat_diff_loss_scale = mat_diff_loss_scale

    def forward(self, pred, target, trans_feat):
        loss = F.nll_loss(pred, target)
        mat_diff_loss = feature_transform_reguliarzer(trans_feat)
        total_loss = loss + mat_diff_loss * self.mat_diff_loss_scale
        return total_loss
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86

PointNet++ 语义分割代码

import torch
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
import torch.nn.functional as F
from pointnet import PointNetEncoder, feature_transform_reguliarzer


class get_model(nn.Module):
    def __init__(self, num_class, with_rgb=True):
        super(get_model, self).__init__()
        if with_rgb:
            channel = 6
        else:
            channel = 3
        self.k = num_class  # 类别数
        self.feat = PointNetEncoder(global_feat=False, feature_transform=True, channel=channel) # 注意:global_feat=False
        self.conv1 = torch.nn.Conv1d(1088, 512, 1)
        self.conv2 = torch.nn.Conv1d(512, 256, 1)
        self.conv3 = torch.nn.Conv1d(256, 128, 1)
        self.conv4 = torch.nn.Conv1d(128, self.k, 1)
        self.bn1 = nn.BatchNorm1d(512)
        self.bn2 = nn.BatchNorm1d(256)
        self.bn3 = nn.BatchNorm1d(128)

    def forward(self, x):
        batchsize = x.size()[0]
        n_pts = x.size()[2]
        x, trans, trans_feat = self.feat(x)
        x = F.relu(self.bn1(self.conv1(x)))
        x = F.relu(self.bn2(self.conv2(x)))
        x = F.relu(self.bn3(self.conv3(x)))
        x = self.conv4(x)
        x = x.transpose(2,1).contiguous()
        x = F.log_softmax(x.view(-1,self.k), dim=-1)
        x = x.view(batchsize, n_pts, self.k)
        return x, trans_feat

class get_loss(torch.nn.Module):
    def __init__(self, mat_diff_loss_scale=0.001):
        super(get_loss, self).__init__()
        self.mat_diff_loss_scale = mat_diff_loss_scale

    def forward(self, pred, target, trans_feat, weight):
        loss = F.nll_loss(pred, target, weight = weight)
        mat_diff_loss = feature_transform_reguliarzer(trans_feat)
        total_loss = loss + mat_diff_loss * self.mat_diff_loss_scale
        return total_loss


if __name__ == '__main__':
    model = get_model(13, with_rgb=False)
    xyz = torch.rand(12, 3, 2048)
    (model(xyz))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54

PointNet++ Util工具函数代码

Farthest Point Sample 最远点采样

在这里插入图片描述

import torch
import torch.nn as nn
import torch.nn.functional as F
from time import time
import numpy as np

def timeit(tag, t):
    print("{}: {}s".format(tag, time() - t))
    return time()

# 归一化点云,使用以centroid为中心的坐标,球半径为1
def pc_normalize(pc):
    l = pc.shape[0]
    centroid = np.mean(pc, axis=0)
    pc = pc - centroid
    m = np.max(np.sqrt(np.sum(pc**2, axis=1)))
    pc = pc / m
    return pc

# square_distance函数用来在ball query过程中确定每一个点距离采样点的距离。
# 函数输入是两组点,N为第一组点src的个数,M为第二组点dst的个数,C为输入点的通道数(如果是xyz时C=3)
# 函数返回的是两组点两两之间的欧几里德距离,即N×M的矩阵。
# 在训练中数据以Mini-Batch的形式输入,所以一个Batch数量的维度为B。
def square_distance(src, dst):
    """
    Calculate Euclid distance between each two points.

    src^T * dst = xn * xm + yn * ym + zn * zm;
    sum(src^2, dim=-1) = xn*xn + yn*yn + zn*zn;
    sum(dst^2, dim=-1) = xm*xm + ym*ym + zm*zm;
    dist = (xn - xm)^2 + (yn - ym)^2 + (zn - zm)^2
         = sum(src**2,dim=-1)+sum(dst**2,dim=-1)-2*src^T*dst

    Input:
        src: source points, [B, N, C]
        dst: target points, [B, M, C]
    Output:
        dist: per-point square distance, [B, N, M]
    """
    B, N, _ = src.shape
    _, M, _ = dst.shape
    dist = -2 * torch.matmul(src, dst.permute(0, 2, 1))
    dist += torch.sum(src ** 2, -1).view(B, N, 1)
    dist += torch.sum(dst ** 2, -1).view(B, 1, M)
    return dist

# 按照输入的点云数据和索引返回索引的点云数据。
# 例如points为B×2048×3点云,idx为[5,666,1000,2000],
# 则返回Batch中第5,666,1000,2000个点组成的B×4×3的点云集。
# 如果idx为一个[B,D1,...DN],则它会按照idx中的维度结构将其提取成[B,D1,...DN,C]。
def index_points(points, idx):
    """

    Input:
        points: input points data, [B, N, C]
        idx: sample index data, [B, S]
    Return:
        new_points:, indexed points data, [B, S, C]
    """
    device = points.device
    B = points.shape[0]
    view_shape = list(idx.shape)
    view_shape[1:] = [1] * (len(view_shape) - 1)
    repeat_shape = list(idx.shape)
    repeat_shape[0] = 1
    batch_indices = torch.arange(B, dtype=torch.long).to(device).view(view_shape).repeat(repeat_shape)
    new_points = points[batch_indices, idx, :]
    return new_points

# farthest_point_sample函数完成最远点采样:
# 从一个输入点云中按照所需要的点的个数npoint采样出足够多的点,
# 并且点与点之间的距离要足够远。
# 返回结果是npoint个采样点在原始点云中的索引。
def farthest_point_sample(xyz, npoint):
    """
    Input:
        xyz: pointcloud data, [B, N, 3]
        npoint: number of samples
    Return:
        centroids: sampled pointcloud index, [B, npoint]
    """
    device = xyz.device
    B, N, C = xyz.shape
    # 初始化一个centroids矩阵,用于存储npoint个采样点的索引位置,大小为B×npoint
    # 其中B为BatchSize的个数 
    centroids = torch.zeros(B, npoint, dtype=torch.long).to(device)
    # distance矩阵(B×N)记录某个batch中所有点到某一个点的距离,初始化的值很大,后面会迭代更新
    distance = torch.ones(B, N).to(device) * 1e10
    # farthest表示当前最远的点,也是随机初始化,范围为0~N,初始化B个;每个batch都随机有一个初始最远点
    farthest = torch.randint(0, N, (B,), dtype=torch.long).to(device)
    # batch_indices初始化为0~(B-1)的数组
    batch_indices = torch.arange(B, dtype=torch.long).to(device)
    # 直到采样点达到npoint,否则进行如下迭代:
    for i in range(npoint):
        # 设当前的采样点centroids为当前的最远点farthest
        centroids[:, i] = farthest
        # 取出该中心点centroid的坐标
        centroid = xyz[batch_indices, farthest, :].view(B, 1, 3)
        # 求出所有点到该centroid点的欧式距离,存在dist矩阵中
        dist = torch.sum((xyz - centroid) ** 2, -1)
        # 建立一个mask,如果dist中的元素小于distance矩阵中保存的距离值,则更新distance中的对应值
        # 随着迭代的继续,distance矩阵中的值会慢慢变小,
        # 其相当于记录着某个Batch中每个点距离所有已出现的采样点的最小距离
        mask = dist < distance
        distance[mask] = dist[mask]
        # 从distance矩阵取出最远的点为farthest,继续下一轮迭代
        farthest = torch.max(distance, -1)[1]
    return centroids
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108

Ball Query 球查询

在这里插入图片描述


# query_ball_point函数用于寻找球形邻域中的点。
# 输入中radius为球形邻域的半径,nsample为每个邻域中要采样的点,
# new_xyz为centroids点的数据,xyz为所有的点云数据
# 输出为每个样本的每个球形邻域的nsample个采样点集的索引[B,S,nsample]
def query_ball_point(radius, nsample, xyz, new_xyz):
    """
    Input:
        radius: local region radius
        nsample: max sample number in local region
        xyz: all points, [B, N, 3]
        new_xyz: query points, [B, S, 3]
    Return:
        group_idx: grouped points index, [B, S, nsample]
    """
    device = xyz.device
    B, N, C = xyz.shape
    _, S, _ = new_xyz.shape
    group_idx = torch.arange(N, dtype=torch.long).to(device).view(1, 1, N).repeat([B, S, 1])
    # sqrdists: [B, S, N] 记录S个中心点(new_xyz)与所有点(xyz)之间的欧几里德距离
    sqrdists = square_distance(new_xyz, xyz)
    # 找到所有距离大于radius^2的点,其group_idx直接置为N;其余的保留原来的值
    group_idx[sqrdists > radius ** 2] = N
    # 做升序排列,前面大于radius^2的都是N,会是最大值,所以直接在剩下的点中取出前nsample个点
    group_idx = group_idx.sort(dim=-1)[0][:, :, :nsample]
    # 考虑到有可能前nsample个点中也有被赋值为N的点(即球形区域内不足nsample个点),
    # 这种点需要舍弃,直接用第一个点来代替即可
    # group_first: 实际就是把group_idx中的第一个点的值复制;为[B, S, K]的维度,便于后面的替换
    group_first = group_idx[:, :, 0].view(B, S, 1).repeat([1, 1, nsample])
    # 找到group_idx中值等于N的点
    mask = group_idx == N
    # 将这些点的值替换为第一个点的值
    group_idx[mask] = group_first[mask]
    return group_idx  # S个group

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35

Sample and Group

在这里插入图片描述
在这里插入图片描述


# Sampling + Grouping主要用于将整个点云分散成局部的group,
# 对每一个group都可以用PointNet单独地提取局部的全局特征。
# Sampling + Grouping分成了sample_and_group和sample_and_group_all两个函数,
# 其区别在于sample_and_group_all直接将所有点作为一个group。
# 例如:
# 512 = npoint: points sampled in farthest point sampling
# 0.2 = radius: search radius in local region
# 32 = nsample: how many points in each local region
def sample_and_group(npoint, radius, nsample, xyz, points, returnfps=False):
    """
    Input:
        npoint:
        radius:
        nsample:
        xyz: input points position data, [B, N, 3]
        points: input points data, [B, N, D]
    Return:
        new_xyz: sampled points position data, [B, npoint, nsample, 3]
        new_points: sampled points data, [B, npoint, nsample, 3+D]
    """
    B, N, C = xyz.shape
    S = npoint
    # 从原点云通过最远点采样挑出的采样点作为new_xyz:
    # 先用farthest_point_sample函数实现最远点采样得到采样点的索引,
    # 再通过index_points将这些点的从原始点中挑出来,作为new_xyz
    fps_idx = farthest_point_sample(xyz, npoint) # [B, npoint, C]
    torch.cuda.empty_cache()
    new_xyz = index_points(xyz, fps_idx)  # 中心点
    torch.cuda.empty_cache()
    # idx:[B, npoint, nsample],代表npoint个球形区域中每个区域的nsample个采样点的索引
    idx = query_ball_point(radius, nsample, xyz, new_xyz)
    torch.cuda.empty_cache()
    grouped_xyz = index_points(xyz, idx) # [B, npoint, nsample, C]
    torch.cuda.empty_cache()
    # grouped_xyz减去采样点即中心值
    grouped_xyz_norm = grouped_xyz - new_xyz.view(B, S, 1, C)
    torch.cuda.empty_cache()

    # 如果每个点上有新的特征的维度,则拼接新的特征与旧的特征,否则直接返回旧的特征
    # 注:用于拼接点特征数据和点坐标数据
    if points is not None:
        grouped_points = index_points(points, idx)
        new_points = torch.cat([grouped_xyz_norm, grouped_points], dim=-1) # [B, npoint, nsample, C+D]
    else:
        new_points = grouped_xyz_norm
    if returnfps:
        return new_xyz, new_points, grouped_xyz, fps_idx
    else:
        return new_xyz, new_points

# sample_and_group_all直接将所有点作为一个group; npoint=1
def sample_and_group_all(xyz, points):
    """
    Input:
        xyz: input points position data, [B, N, 3]
        points: input points data, [B, N, D]
    Return:
        new_xyz: sampled points position data, [B, 1, 3]
        new_points: sampled points data, [B, 1, N, 3+D]
    """
    device = xyz.device
    B, N, C = xyz.shape
    new_xyz = torch.zeros(B, 1, C).to(device)
    grouped_xyz = xyz.view(B, 1, N, C)
    if points is not None:
        new_points = torch.cat([grouped_xyz, points.view(B, 1, N, -1)], dim=-1)
    else:
        new_points = grouped_xyz
    return new_xyz, new_points
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70

Set Abstraction

在这里插入图片描述


# PointNetSetAbstraction类实现普通的Set Abstraction:
# 首先通过sample_and_group的操作形成局部group,
# 然后对局部group中的每一个点做MLP操作,最后进行局部的最大池化,得到局部的全局特征。
class PointNetSetAbstraction(nn.Module):
    # 例如:npoint=128, radius=0.4, nsample=64, in_channel=128 + 3, mlp=[128, 128, 256], group_all=False
    # 128 = npoint: points sampled in farthest point sampling
    # 0.4 = radius: search radius in local region
    # 64 = nsample: how many points in each local region
    # [128, 128 ,256] = output size for MLP on each point 
    def __init__(self, npoint, radius, nsample, in_channel, mlp, group_all):
        super(PointNetSetAbstraction, self).__init__()
        self.npoint = npoint
        self.radius = radius
        self.nsample = nsample
        self.mlp_convs = nn.ModuleList()
        self.mlp_bns = nn.ModuleList()
        last_channel = in_channel
        for out_channel in mlp:
            self.mlp_convs.append(nn.Conv2d(last_channel, out_channel, 1))
            self.mlp_bns.append(nn.BatchNorm2d(out_channel))
            last_channel = out_channel
        self.group_all = group_all

    def forward(self, xyz, points):
        """
        Input:
            xyz: input points position data, [B, C, N]
            points: input points data, [B, D, N]
        Return:
            new_xyz: sampled points position data, [B, C, S]
            new_points_concat: sample points feature data, [B, D', S]
        """
        xyz = xyz.permute(0, 2, 1)
        if points is not None:
            points = points.permute(0, 2, 1)

        # 形成局部的group
        if self.group_all:
            new_xyz, new_points = sample_and_group_all(xyz, points)
        else:
            new_xyz, new_points = sample_and_group(self.npoint, self.radius, self.nsample, xyz, points)
        # new_xyz: sampled points position data, [B, npoint, C]
        # new_points: sampled points data, [B, npoint, nsample, C+D]
        new_points = new_points.permute(0, 3, 2, 1) # [B, C+D, nsample,npoint]
        # 以下是pointnet操作:
        # 对局部group中的每一个点做MLP操作:
        # 利用1x1的2d的卷积相当于把每个group当成一个通道,共npoint个通道,
        # 对[C+D, nsample]的维度上做逐像素的卷积,结果相当于对单个C+D维度做1d的卷积
        for i, conv in enumerate(self.mlp_convs):
            bn = self.mlp_bns[i]
            new_points = F.relu(bn(conv(new_points)))
        # 最后进行局部的最大池化,得到局部的全局特征
        new_points = torch.max(new_points, 2)[0]
        new_xyz = new_xyz.permute(0, 2, 1)
        return new_xyz, new_points

# PointNetSetAbstractionMSG类实现MSG方法的Set Abstraction:
# 这里radius_list输入的是一个list,例如[0.1,0.2,0.4];
# 对于不同的半径做ball query,将不同半径下的点云特征保存在new_points_list中,最后再拼接到一起。
class PointNetSetAbstractionMsg(nn.Module):
    # 例如:128, [0.2, 0.4, 0.8], [32, 64, 128], 320, [[64, 64, 128], [128, 128, 256], [128, 128, 256]]
    def __init__(self, npoint, radius_list, nsample_list, in_channel, mlp_list):
        super(PointNetSetAbstractionMsg, self).__init__()
        self.npoint = npoint
        self.radius_list = radius_list
        self.nsample_list = nsample_list
        self.conv_blocks = nn.ModuleList()
        self.bn_blocks = nn.ModuleList()
        for i in range(len(mlp_list)):
            convs = nn.ModuleList()
            bns = nn.ModuleList()
            last_channel = in_channel + 3
            for out_channel in mlp_list[i]:
                convs.append(nn.Conv2d(last_channel, out_channel, 1))
                bns.append(nn.BatchNorm2d(out_channel))
                last_channel = out_channel
            self.conv_blocks.append(convs)
            self.bn_blocks.append(bns)

    def forward(self, xyz, points):
        """
        Input:
            xyz: input points position data, [B, C, N]
            points: input points data, [B, D, N]
        Return:
            new_xyz: sampled points position data, [B, C, S]
            new_points_concat: sample points feature data, [B, D', S]
        """
        xyz = xyz.permute(0, 2, 1)
        if points is not None:
            points = points.permute(0, 2, 1)

        B, N, C = xyz.shape
        S = self.npoint
        # 最远点采样
        new_xyz = index_points(xyz, farthest_point_sample(xyz, S))
        # 将不同半径下的点云特征保存在new_points_list
        new_points_list = []
        for i, radius in enumerate(self.radius_list):
            K = self.nsample_list[i]
            # query_ball_point函数用于寻找球形邻域中的点
            group_idx = query_ball_point(radius, K, xyz, new_xyz)
            # 按照输入的点云数据和索引返回索引的点云数据
            grouped_xyz = index_points(xyz, group_idx)
            grouped_xyz -= new_xyz.view(B, S, 1, C)
            if points is not None:
                grouped_points = index_points(points, group_idx)
                # 拼接点特征数据和点坐标数据
                grouped_points = torch.cat([grouped_points, grouped_xyz], dim=-1)
            else:
                grouped_points = grouped_xyz

            grouped_points = grouped_points.permute(0, 3, 2, 1)  # [B, D, K, S]
            for j in range(len(self.conv_blocks[i])):
                conv = self.conv_blocks[i][j]
                bn = self.bn_blocks[i][j]
                grouped_points =  F.relu(bn(conv(grouped_points)))
            # 最大池化,获得局部区域的全局特征
            new_points = torch.max(grouped_points, 2)[0]  # [B, D', S]
            new_points_list.append(new_points) # 不同半径下的点云特征的列表

        new_xyz = new_xyz.permute(0, 2, 1)
        # 拼接不同半径下的点云特征
        new_points_concat = torch.cat(new_points_list, dim=1)
        return new_xyz, new_points_concat

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127

分割中的 Feature Prepogation

在这里插入图片描述


# Feature Propagation的实现主要通过线性差值和MLP完成。
# 当点的个数只有一个的时候,采用repeat直接复制成N个点;
# 当点的个数大于一个的时候,采用线性差值的方式进行上采样,
# 拼接上下采样对应点的SA层的特征,再对拼接后的每一个点都做一个MLP。
class PointNetFeaturePropagation(nn.Module):
    def __init__(self, in_channel, mlp):  # 例如in_channel=384, mlp=[256, 128]
        super(PointNetFeaturePropagation, self).__init__()
        self.mlp_convs = nn.ModuleList()
        self.mlp_bns = nn.ModuleList()
        last_channel = in_channel
        for out_channel in mlp:
            self.mlp_convs.append(nn.Conv1d(last_channel, out_channel, 1))
            self.mlp_bns.append(nn.BatchNorm1d(out_channel))
            last_channel = out_channel

    def forward(self, xyz1, xyz2, points1, points2):
        """
        Input:
            xyz1: input points position data, [B, C, N]
            xyz2: sampled input points position data, [B, C, S]
            points1: input points data, [B, D, N]
            points2: input points data, [B, D, S]
        Return:
            new_points: upsampled points data, [B, D', N] # 上采样后的点
        """
        xyz1 = xyz1.permute(0, 2, 1)
        xyz2 = xyz2.permute(0, 2, 1)

        points2 = points2.permute(0, 2, 1)
        B, N, C = xyz1.shape
        _, S, _ = xyz2.shape

        if S == 1:
            # 当点的个数只有一个的时候,采用repeat直接复制成N个点
            interpolated_points = points2.repeat(1, N, 1)
        else:
            # 当点的个数大于一个的时候,采用线性差值的方式进行上采样
            dists = square_distance(xyz1, xyz2)
            dists, idx = dists.sort(dim=-1)
            dists, idx = dists[:, :, :3], idx[:, :, :3]  # [B, N, 3]

            dist_recip = 1.0 / (dists + 1e-8) # 距离越远的点权重越小
            norm = torch.sum(dist_recip, dim=2, keepdim=True)
            weight = dist_recip / norm # 对于每一个点的权重再做一个全局的归一化
            # 获得插值点
            interpolated_points = torch.sum(index_points(points2, idx) * weight.view(B, N, 3, 1), dim=2)

        if points1 is not None:
            points1 = points1.permute(0, 2, 1)
            # 拼接上下采样前对应点SA层的特征
            new_points = torch.cat([points1, interpolated_points], dim=-1)
        else:
            new_points = interpolated_points

        new_points = new_points.permute(0, 2, 1)
        # 对拼接后每一个点都做一个MLP
        for i, conv in enumerate(self.mlp_convs):
            bn = self.mlp_bns[i]
            new_points = F.relu(bn(conv(new_points)))
        return new_points

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小惠珠哦/article/detail/766032
推荐阅读
  

闽ICP备14008679号