当前位置:   article > 正文

实践之K近邻算法实现红酒聚类

实践之K近邻算法实现红酒聚类

前言

K近邻算法是一种用于分类和回归的非参数统计方法,通过计算样本与训练样本的距离,找出最接近的k个样本进行投票来确定分类结果。算法的基本要素包括K值、距离度量和分类决策规则。 K值决定了邻居的影响程度,距离度量反映了样本间的相似度,而分类决策规则通常是多数表决或基于距离加权的多数表决。

分类问题

预测算法(分类)的流程包括以下步骤:首先在训练样本集中找出距离待测样本x_test最近的k个样本,并保存至集合N中;然后统计集合N中每一类样本的个数

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小惠珠哦/article/detail/832953
推荐阅读
相关标签