当前位置:   article > 正文

【Mamba】医学图像分割的Mamba评估指标参考(更新中...)_基于mamba的图片查重

基于mamba的图片查重


在这里插入图片描述

All Models in

代码汇总:https://github.com/Event-AHU/Mamba_State_Space_Model_Paper_List

VM-UNet&VM-UNetV2

DatasetModelmIoU(%)↑DSC(%)↑Acc(%)↑Spe(%)↑Sen(%)↑
ISIC17UNet76.9886.9995.6597.4386.82
ISIC17UTNetV277.3587.2395.8498.0584.85
ISIC17TransFuse79.2188.4096.1797.9887.14
ISIC17MALUNet78.7888.1396.1898.4784.78
ISIC17UNetV282.1890.2296.7898.4088.71
ISIC17VM-UNet80.2389.0396.2997.5889.90
ISIC17VM-UNetV282.3490.3196.7097.6791.89
DatasetModelmIoU(%)↑DSC(%)↑Acc(%)↑Spe(%)↑Sen(%)↑
ISIC18UNet77.8687.5594.0596.6985.86
ISIC18UNet++78.3187.8394.0295.7588.65
ISIC18Att-UNet78.4387.9194.1396.2387.60
ISIC18UTNetV278.9788.2594.3296.4887.60
ISIC18SANet79.5288.5994.3995.9789.46
ISIC18TransFuse80.6389.2794.6695.7491.28
ISIC18MALUNet80.2589.0494.6296.1989.74
ISIC18UNetV280.7189.3294.8696.9488.34
ISIC18VM-UNet81.3589.7194.9196.1391.12
ISIC18VM-UNetV281.3789.7395.0697.1388.60
DatasetModelDSC↑HD95↓AortaGallbladderKidney(L)Kidney®LiverPancreasSpleenStomach
SynapseV-Net [25]68.81-75.3451.8777.1080.7587.8440.0580.5656.98
SynapseDARR [4]69.77-74.7453.7772.3173.2494.0854.1889.9045.96
SynapseR50 U-Net [10]74.6836.8787.4766.3680.6078.1993.7456.9085.8774.16
SynapseUNet [27]76.8539.7089.0769.7277.7768.6093.4353.9886.6775.58
SynapseR50 Att-UNet [10]75.5736.9755.9263.9179.2072.7193.5649.3787.1974.95
SynapseAtt-UNet [26]77.7736.0289.5568.8877.9871.1193.5758.0487.3075.75
SynapseR50 ViT [10]71.2932.8773.7355.1375.8072.2091.5145.9981.9973.95
SynapseTransUnet [10]77.4831.6987.2363.1381.8777.0294.0855.8685.0875.62
SynapseTransNorm [5]78.4030.2586.2365.1082.1878.6394.2255.3489.5076.01
SynapseSwin U-Net [9]79.1321.5585.4766.5383.2879.6194.2956.5890.6676.60
SynapseTransDeepLab [6]80.1621.2586.0469.1684.0879.8893.5361.1989.0078.40
SynapseUCTransNet [32]78.2326.75--------
SynapseMT-UNet [33]78.5926.5987.9264.9981.4777.2993.0659.4687.7576.81
SynapseMEW-UNet [30]78.9216.4486.6865.3282.8780.0293.6358.3690.1974.26
SynapseVM-UNet81.0819.2186.4069.4186.1682.7694.1758.8089.5181.40
DatasetModelmIoU(%)↑DSC(%)↑Acc(%)↑Spe(%)↑Sen(%)↑
Kvasir-SEGUNetV284.0091.3097.4799.0888.39
Kvasir-SEGVMUnet80.3289.0996.8098.4987.21
Kvasir-SEGVMUnetV284.1591.3497.5299.2587.71
ClinicDBUNetV283.8591.2198.5999.1691.99
ClinicDBVMUnet81.9590.0898.4299.1889.73
ClinicDBVMUnetV289.3194.3599.0999.3895.64
ColonDBUNetV257.2972.8596.1998.4368.46
ColonDBVMUnet55.2871.2096.0298.4565.89
ColonDBVMUnetV260.9875.7696.5498.4672.68
ETISUNetV271.9083.6598.3598.6192.96
ETISVMUnet66.4179.8198.2699.3375.79
ETISVMUnetV272.2983.9298.4798.9688.07
CVC-300UNetV282.8690.6399.3499.5493.82
CVC-300VMUnet79.5588.6199.2099.4492.46
CVC-300VMUnetV289.3194.3599.0899.3895.6
ModelInput sizeParams(M)↓FLOPs(G)↓FPS↑
UNetV2(3, 256, 256)25.155.4032.74
VM-Unet(3, 256, 256)34.627.5620.612
VM-UnetV2(3, 256, 256)17.914.4032.58

参考:
https://github.com/JCruan519/VM-UNet
https://github.com/nobodyplayer1/VM-UNetV2

LightM-UNet

DatasetModelsParams(M)GFLOPsLiver (DSC)Liver (mIoU)Tumor (DSC)Tumor (mIoU)Average (DSC)Average (mIoU)
LiTSnnU-Net [8]88.627,240.2695.7791.9468.4556.3482.1174.13
LiTSSegResNet [15]18.791,158.3096.1192.5671.2259.7683.6776.16
LiTSUNETR [7]92.621,891.3594.0688.9548.5837.0171.3262.98
LiTSSwinUNETR [6]61.991,570.3295.2491.0766.6755.0980.9573.08
LiTSU-Mamba [14]173.5318,057.2095.9492.3370.0558.4283.0075.37
LiTSLightM-UNet1.87457.6296.3192.9272.8662.0584.5877.48
DatasetModelsParams(M)GFLOPsDSC(%)mIoU(%)
Montgomery&ShenzhennnU-Net [8]126.565,594.9896.1392.66
Montgomery&ShenzhenSegResNet [15]6.29748.9695.9792.36
Montgomery&ShenzhenUNETR [7]87.511,267.5395.3691.26
Montgomery&ShenzhenSwinUNETR [6]25.12909.2695.3791.31
Montgomery&ShenzhenU-Mamba [14]244.1012,521.2795.8992.23
Montgomery&ShenzhenLightM-UNet1.09267.1996.1792.74

参考:
https://github.com/MrBlankness/LightM-UNet

UltraLight-VM-UNet

DatasetMethodsParameters (Millions)GFLOPsDSCSESPACC
ISIC17U-Net2.0093.2240.89890.87930.98120.9613
ISIC17SCR-Net0.8011.5670.88980.84970.98530.9588
ISIC17ATTENTION SWIN U-NET46.91014.1810.88590.84920.98470.9591
ISIC17 C 2 S D G C^2SDG C2SDG22.0017.9720.89380.88590.97650.9588
ISIC17VM-UNet27.4274.1120.90700.88370.98420.9645
ISIC17MALUNet0.1750.0830.88960.88240.97620.9583
ISIC17LightM-UNet0.4030.3910.90800.88390.98460.9649
ISIC17UltraLight VM-UNet0.0490.0600.90910.90530.97900.9646
DatasetMethodsParameters (Millions)GFLOPsDSCSESPACC
ISIC18U-Net2.0093.2240.88510.87350.97440.9539
ISIC18SCR-Net0.8011.5670.88860.88920.97140.9547
ISIC18ATTENTION SWIN U-NET46.91014.1810.85400.80570.98260.9480
ISIC18 C 2 S D G C^2SDG C2SDG22.0017.9720.88060.89700.96430.9506
ISIC18VM-UNet27.4274.1120.88910.88090.97430.9554
ISIC18MALUNet0.1750.0830.89310.88900.97250.9548
ISIC18LightM-UNet0.4030.3910.88980.88290.97650.9555
ISIC18UltraLight VM-UNet0.0490.0600.89400.86800.97810.9558
DatasetMethodsParameters (Millions)GFLOPsDSCSESPACC
P H 2 PH^2 PH2U-Net2.0093.2240.90600.92550.94400.9381
P H 2 PH^2 PH2SCR-Net0.8011.5670.89890.91140.94460.9339
P H 2 PH^2 PH2ATTENTION SWIN U-NET46.91014.1810.88500.88860.93630.9213
P H 2 PH^2 PH2 C 2 S D G C^2SDG C2SDG22.0017.9720.90300.91370.94760.9367
P H 2 PH^2 PH2VM-UNet27.4274.1120.90330.91310.94830.9369
P H 2 PH^2 PH2MALUNet0.1750.0830.88650.89220.94250.9263
P H 2 PH^2 PH2LightM-UNet0.4030.3910.91560.91290.96130.9457
P H 2 PH^2 PH2UltraLight VM-UNet0.0490.0600.92650.93450.96060.9521

参考:
https://github.com/wurenkai/UltraLight-VM-UNet

H-vmunet

DatasetMethodsDSCSESPACC
ISIC17U-Net0.81590.81720.96800.9164
ISIC17U-Net v20.91490.90520.98210.9670
ISIC17Att U-Net0.80820.79980.97760.9145
ISIC17ATTENTION SWIN U-Net0.88590.84920.98470.9591
ISIC17TransNorm0.89330.85350.98590.9582
ISIC17MALUNet0.88960.88240.97620.9583
ISIC17MSNet0.90670.87710.98600.9647
ISIC17SCR-Net0.88980.84970.98530.9588
ISIC17META-Unet0.90680.88010.98360.9639
ISIC17 C 2 S D G C^2SDG C2SDG0.89380.88590.97650.9588
ISIC17MHorUNet0.91320.89740.98340.9666
ISIC17VM-UNet0.90700.88370.98420.9645
ISIC17H-vmunet (VSS)0.90680.88970.98230.9642
ISIC17H-vmunet (H-VSS)0.91720.90560.98310.9680
DatasetMethodsDSCSESPACC
SpleenU-Net0.94410.96040.99890.9983
SpleenU-Net v20.93830.92440.99900.9982
SpleenAtt U-Net0.93210.93500.99890.9979
SpleenATTENTION SWIN U-Net0.78290.66620.99940.9945
SpleenTransNorm0.86180.79380.99920.9962
SpleenMALUNet0.93100.93050.99890.9979
SpleenMSNet0.95210.94250.99940.9986
SpleenSCR-Net0.91810.91220.99880.9976
SpleenMETA-Unet0.92330.89210.99930.9978
Spleen C 2 S D G C^2SDG C2SDG0.93540.92630.99910.9981
SpleenMHorUNet0.94240.95080.99890.9982
SpleenVM-UNet0.94180.94290.99910.9982
SpleenH-vmunet (VSS)0.94030.93300.99920.9982
SpleenH-vmunet (H-VSS)0.95710.96420.99920.9987
DatasetMethodsDSCSESPACC
CVC-ClinicDBU-Net0.90390.89260.99140.9821
CVC-ClinicDBU-Net v20.90550.88610.99300.9825
CVC-ClinicDBAtt U-Net0.86970.84740.98940.9760
CVC-ClinicDBATTENTION SWIN U-Net0.75260.65030.99430.9631
CVC-ClinicDBTransNorm0.88450.86340.99180.9801
CVC-ClinicDBMALUNet0.85620.84750.98620.9731
CVC-ClinicDBMSNet0.90500.87200.99320.9832
CVC-ClinicDBSCR-Net0.89510.87010.99220.9807
CVC-ClinicDBMETA-Unet0.89750.87680.99190.9811
CVC-ClinicDB C 2 S D G C^2SDG C2SDG0.89670.87240.99230.9810
CVC-ClinicDBMHorUNet0.89300.88030.99040.9801
CVC-ClinicDBVM-UNet0.85240.83700.98670.9726
CVC-ClinicDBH-vmunet (VSS)0.89840.87680.99210.9813
CVC-ClinicDBH-vmunet (H-VSS)0.90870.88030.99400.9833

参考:
https://github.com/wurenkai/H-vmunet

U-Mamba

MethodsOrgans in Abdomen CT 3D DSCOrgans in Abdomen CT 3D NSDOrgans in Abdomen MRI 3D DSCOrgans in Abdomen MRI 3D NSD
nnU-Net0.8615±0.07900.8972±0.08240.8309±0.07690.8996±0.0729
SegResNet0.7927±0.11620.8257±0.11940.8146±0.09590.8841±0.0917
UNETR0.6824±0.15060.7004±0.15770.6867±0.14880.7440±0.1627
SwinUNETR0.7594±0.10950.7663±0.11900.7565±0.13940.8218±0.1409
U-Mamba_Bot0.8683±0.08080.9049±0.08210.8453±0.06730.9121±0.0634
U-Mamba_Enc0.8638±0.09080.8980±0.09210.8501±0.07320.9171±0.0689
MethodsOrgans in Abdomen CT 2D DSCOrgans in Abdomen CT 2D NSDOrgans in Abdomen MRI 2D DSCOrgans in Abdomen MRI 2D NSD
nnU-Net0.7450±0.11170.8153±0.11450.6264±0.30240.6412±0.3074
SegResNet0.7317±0.13790.8034±0.13860.5820±0.32680.5968±0.3303
UNETR0.5747±0.16720.6309±0.18580.5017±0.32010.5168±0.3235
SwinUNETR0.7028±0.13480.7669±0.14420.5528±0.30890.5683±0.3123
U-Mamba_Bot0.7588±0.10510.8285±0.10740.6540±0.30080.6692±0.3050
U-Mamba_Enc0.7625±0.10820.8327±0.10870.6303±0.30670.6451±0.3104

参考:
https://github.com/bowang-lab/U-Mamba

LMa-UNet

MethodsOrgans in Abdomen CT 3D DSCOrgans in Abdomen CT 3D NSDOrgans in Abdomen MRI 2D DSCOrgans in Abdomen MRI 2D NSD
SegResNet79.2782.5773.1780.34
nnUNet86.1589.7274.5081.53
UNETR68.2470.0457.4763.09
SwinUNETR75.9476.6370.2876.69
nnFormer78.3481.4572.7979.63
U-Mamba86.3889.8076.2583.27
LMa-UNet (Ours)86.8290.0277.3583.80

参考:
https://github.com/wjh892521292/LMa-UNet

Mamba-UNet

DatasetMethodsDice ↑IoU ↑Acc ↑Pre ↑Sen ↑Spe ↑HD ↓ASD ↓
ACDC MRI CardiacUNet0.92480.86450.99690.91570.93640.98832.76550.8180
ACDC MRI CardiacAttentionUNet0.92490.86470.99700.92390.92600.98583.41560.9765
ACDC MRI CardiacTransUNet0.91960.85610.99680.91870.92070.98462.77420.8324
ACDC MRI CardiacSwin-UNet0.91880.85450.99680.91510.92310.98573.18170.9932
ACDC MRI CardiacMamba-UNet0.92810.86980.99720.92750.92890.98592.46450.7677
DatasetMethodsDice ↑IoU ↑Acc ↑Pre ↑Sen ↑Spe ↑HD ↓ASD ↓
Synapse CT abdominalUNet0.62990.51980.99690.62240.65410.988937.734210.0725
Synapse CT abdominalAttentionUNet0.60690.49640.99620.59590.63940.989074.244925.8229
Synapse CT abdominalTransUNet0.60920.50170.99700.60270.63180.985833.812610.8979
Synapse CT abdominalSwin-UNet0.61780.51210.99720.61260.63570.985930.54149.2504
Synapse CT abdominalMamba-UNet0.64290.54050.99750.64520.66030.989024.47256.4717

参考:
https://github.com/ziyangwang007/Mamba-UNet

SegMamba

DatasetMethodsDice ↑ (WT)HD95 ↓ (WT)Dice ↑ (TC)HD95 ↓ (TC)Dice ↑(ET)HD95 ↓ (ET)Dice ↑ (Avg)HD95 ↓ (Avg)
BraTS2023SegresNet92.024.0789.104.0883.663.8888.264.01
BraTS2023UX-Net93.134.5690.035.6885.914.1989.694.81
BraTS2023MedNeXt92.414.9887.754.6783.964.5188.044.72
BraTS2023UNETR92.196.1786.395.2984.485.0387.685.49
BraTS2023SwinUNETR92.715.2287.794.4284.214.4888.234.70
BraTS2023SwinUNETR-V293.355.0189.654.4185.174.4189.394.51
BraTS2023SegMamba93.613.3792.653.8587.713.4891.323.56
DatasetDatasetIoU ↑ ( Airway Tree)DLR ↑ ( Airway Tree)DBR ↑ ( Airway Tree)
AIIB2023SegresNet87.4965.0753.91
AIIB2023UX-Net87.5565.5654.04
AIIB2023MedNeXt85.8157.4347.34
AIIB2023UNETR83.2248.0338.73
AIIB2023SwinUNETR87.1163.3152.15
AIIB2023SwinUNETR-V287.5164.6853.19
AIIB2023SegMamba88.5970.2161.33
DatasetMethodsDice ↑HD95 ↓
CRC-500SegresNet46.1034.97
CRC-500UX-Net45.7349.73
CRC-500MedNeXt35.9352.54
CRC-500UNETR33.7061.51
CRC-500SwinUNETR38.3655.05
CRC-500SwinUNETR-V241.7658.05
CRC-500SegMamba48.0230.89

参考:
https://github.com/ge-xing/SegMamba

nnMamba

DatasetMethodsWT (Dice)TC (Dice)ET (Dice)Average (Dice)WT (HD95)TC (HD95)ET (HD95)Average (HD95)
BraTS 2023UniMiss[36]93.4890.0684.4089.314.556.8013.708.38
BraTS 2023DIT[37]93.4990.2284.3889.364.215.2713.647.71
BraTS 2023UNETR[21]93.3389.8985.1989.474.767.2712.788.27
BraTS 2023nnUNet[5]93.3190.2485.1889.584.494.9511.917.12
BraTS 2023nnMamba93.4690.7485.7289.974.185.1210.316.53
DatasetMethodsParameter (M)Flops (G)mDice (CT-Test)mNSD (CT-Test)mDice(MRI-Test)mNSD(MRI-Test)
AMOS2022nnUNet[5]31.18680.3189.0478.3267.6359.02
AMOS2022VNet[38]45.65849.9682.9267.5665.6457.37
AMOS2022CoTr [39]41.87668.1580.8666.3160.4951.18
AMOS2022nnFormer[22]150.14425.7885.6172.4862.9254.06
AMOS2022UNETR[21]93.02177.5179.4360.8457.9147.25
AMOS2022SwinUNetr[40]62.83668.1586.3273.8357.5047.04
AMOS2022nnMamba15.55141.1489.6379.7373.9865.13

分类:

DatasetMethodsACC (NC VS AD)F1 (NC VS AD)AUC (NC VS AD)ACC (sMCI VS pMCI)F1 (sMCI VS pMCI)AUC (sMCI VS pMCI)
ANDIResNet88.40±3.4188.00±2.8194.93±0.7267.96±1.5052.14±1.5174.94±2.18
ANDIDenseNet87.95±0.7086.93±0.8794.86±0.4073.12±3.1053.30±2.9976.31±3.09
ANDIViT88.85±1.1787.66±1.7294.12±1.2967.16±3.1651.68±5.7275.08±6.88
ANDICRATE84.69±2.5382.66±3.4791.42±1.4370.63±2.6053.41±2.5376.06±2.98
ANDInnMamba89.41±0.8588.68±0.7795.81±0.5975.79±1.7956.55±2.3776.84±0.84

参考:
https://github.com/lhaof/nnMamba

T-Mamba

MethodFLOPs(G)↓Params(M)↓HD(mm)↓ASSD(mm)↓IoU(%)↑SO(%)↑DSC(%)↑
UNet3D2223.0316.32113.7922.4070.6270.7236.67
DenseVNet23.730.878.211.1484.5794.8891.15
AttentionUNet3D18042720.7994.48147.1061.1052.5242.49
DenseVoxelNet402.321.7841.183.8881.5192.5089.58
MultiResUNet3D1505.3817.9374.068.1776.1981.7065.45
UNETR229.1993.08107.8917.9574.3073.1481.84
SwinUNETR912.3562.1982.717.5083.1086.8089.74
TransBTS306.8033.1529.034.1082.9490.6839.32
nnFormer583.49149.2551.285.0883.5490.8990.66
3D UX-Net1754.7953.01108.5219.6975.4073.4884.89
PMFSNet3D15.140.635.570.7984.6895.1091.30
T-Mamba (Ours)--1.180.4288.3197.5393.60

参考:
https://github.com/isbrycee/T-Mamba

ViM-UNet

表格无

参考:
https://github.com/constantinpape/torch-em/tree/main/torch_em/model

TM-UNet

ModelDatasetmIoU(%)↑DSC(%)↑Acc(%)↑Spe(%)↑Sen(%)↑
UNetISIC1776.9886.9995.6597.4386.82
UTNetV2ISIC1777.3587.2395.8498.0584.85
TransFuseISIC1779.2188.4096.1797.9887.14
MALUNetISIC1778.7888.1396.1898.4784.78
VM-UNetISIC1779.8288.5296.3497.9687.65
VM-UNetV2ISIC1779.7388.1496.0997.7887.89
TM-UNetISIC1780.5189.2096.4698.2887.37
UNetISIC1877.8687.5594.0596.6985.86
Unet++ISIC1878.3187.8394.0295.7588.65
Att-UnetISIC1878.4387.9194.1396.2387.60
UTNetV2ISIC1878.9788.2594.3296.4887.60
SANetISIC1879.5288.5994.3995.9789.46
TransFuseISIC1880.6389.2794.6695.7491.28
MALUNetISIC1880.2589.0494.6296.1989.74
UNetV2ISIC1880.7189.3294.8696.9488.34
VM-UnetISIC1880.2188.6994.5796.1590.32
VM-UNetV2ISIC1880.4588.7394.7696.5188.57
TM-UNetISIC1881.5589.8495.0896.6889.98
DatasetModelmIoU(%)↑DSC(%)↑Acc(%)↑Spe(%)↑Sen(%)↑
VM-UNetKvasir-Instrument88.6793.9998.9099.5592.51
VM-UNetV2Kvasir-Instrument87.3093.2298.7599.4192.33
TM-UNetKvasir-Instrument89.5794.5098.9799.4494.48
VM-UNetKvasir-Instrument78.6688.0596.6198.9683.27
VM-UNetV2Kvasir-SEG76.9987.0096.1297.8186.55
TM-UNetKvasir-SEG77.8387.5396.3798.3785.02
VM-UNetKvasir-SEG76.5386.7197.9299.0584.89
VM-UNetV2ClinicDB83.8091.1998.5999.2291.35
TM-UNetClinicDB83.8291.2098.5999.2591.10
VM-UNetClinicDB51.1767.7095.5598.1962.67
VM-UNetV2ColonDB51.8968.3295.3197.5267.85
TM-UNetColonDB57.2372.8096.2698.5898.37
VM-UNetColonDB68.5781.3598.6899.1285.89
VM-UNetV2CVC-30072.3083.9298.8199.0392.51
TM-UNetCVC-30077.7987.5199.1199.3292.94

参考:
无代码
论文名:Rotate to Scan: UNet-like Mamba with Triplet SSM Module for Medical Image Segmentation

All Papers in

文章汇总:https://github.com/Event-AHU/Mamba_State_Space_Model_Paper_List

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小惠珠哦/article/detail/846678
推荐阅读
相关标签
  

闽ICP备14008679号