赞
踩
代码汇总:https://github.com/Event-AHU/Mamba_State_Space_Model_Paper_List
Dataset | Model | mIoU(%)↑ | DSC(%)↑ | Acc(%)↑ | Spe(%)↑ | Sen(%)↑ |
---|---|---|---|---|---|---|
ISIC17 | UNet | 76.98 | 86.99 | 95.65 | 97.43 | 86.82 |
ISIC17 | UTNetV2 | 77.35 | 87.23 | 95.84 | 98.05 | 84.85 |
ISIC17 | TransFuse | 79.21 | 88.40 | 96.17 | 97.98 | 87.14 |
ISIC17 | MALUNet | 78.78 | 88.13 | 96.18 | 98.47 | 84.78 |
ISIC17 | UNetV2 | 82.18 | 90.22 | 96.78 | 98.40 | 88.71 |
ISIC17 | VM-UNet | 80.23 | 89.03 | 96.29 | 97.58 | 89.90 |
ISIC17 | VM-UNetV2 | 82.34 | 90.31 | 96.70 | 97.67 | 91.89 |
Dataset | Model | mIoU(%)↑ | DSC(%)↑ | Acc(%)↑ | Spe(%)↑ | Sen(%)↑ |
---|---|---|---|---|---|---|
ISIC18 | UNet | 77.86 | 87.55 | 94.05 | 96.69 | 85.86 |
ISIC18 | UNet++ | 78.31 | 87.83 | 94.02 | 95.75 | 88.65 |
ISIC18 | Att-UNet | 78.43 | 87.91 | 94.13 | 96.23 | 87.60 |
ISIC18 | UTNetV2 | 78.97 | 88.25 | 94.32 | 96.48 | 87.60 |
ISIC18 | SANet | 79.52 | 88.59 | 94.39 | 95.97 | 89.46 |
ISIC18 | TransFuse | 80.63 | 89.27 | 94.66 | 95.74 | 91.28 |
ISIC18 | MALUNet | 80.25 | 89.04 | 94.62 | 96.19 | 89.74 |
ISIC18 | UNetV2 | 80.71 | 89.32 | 94.86 | 96.94 | 88.34 |
ISIC18 | VM-UNet | 81.35 | 89.71 | 94.91 | 96.13 | 91.12 |
ISIC18 | VM-UNetV2 | 81.37 | 89.73 | 95.06 | 97.13 | 88.60 |
Dataset | Model | DSC↑ | HD95↓ | Aorta | Gallbladder | Kidney(L) | Kidney® | Liver | Pancreas | Spleen | Stomach |
---|---|---|---|---|---|---|---|---|---|---|---|
Synapse | V-Net [25] | 68.81 | - | 75.34 | 51.87 | 77.10 | 80.75 | 87.84 | 40.05 | 80.56 | 56.98 |
Synapse | DARR [4] | 69.77 | - | 74.74 | 53.77 | 72.31 | 73.24 | 94.08 | 54.18 | 89.90 | 45.96 |
Synapse | R50 U-Net [10] | 74.68 | 36.87 | 87.47 | 66.36 | 80.60 | 78.19 | 93.74 | 56.90 | 85.87 | 74.16 |
Synapse | UNet [27] | 76.85 | 39.70 | 89.07 | 69.72 | 77.77 | 68.60 | 93.43 | 53.98 | 86.67 | 75.58 |
Synapse | R50 Att-UNet [10] | 75.57 | 36.97 | 55.92 | 63.91 | 79.20 | 72.71 | 93.56 | 49.37 | 87.19 | 74.95 |
Synapse | Att-UNet [26] | 77.77 | 36.02 | 89.55 | 68.88 | 77.98 | 71.11 | 93.57 | 58.04 | 87.30 | 75.75 |
Synapse | R50 ViT [10] | 71.29 | 32.87 | 73.73 | 55.13 | 75.80 | 72.20 | 91.51 | 45.99 | 81.99 | 73.95 |
Synapse | TransUnet [10] | 77.48 | 31.69 | 87.23 | 63.13 | 81.87 | 77.02 | 94.08 | 55.86 | 85.08 | 75.62 |
Synapse | TransNorm [5] | 78.40 | 30.25 | 86.23 | 65.10 | 82.18 | 78.63 | 94.22 | 55.34 | 89.50 | 76.01 |
Synapse | Swin U-Net [9] | 79.13 | 21.55 | 85.47 | 66.53 | 83.28 | 79.61 | 94.29 | 56.58 | 90.66 | 76.60 |
Synapse | TransDeepLab [6] | 80.16 | 21.25 | 86.04 | 69.16 | 84.08 | 79.88 | 93.53 | 61.19 | 89.00 | 78.40 |
Synapse | UCTransNet [32] | 78.23 | 26.75 | - | - | - | - | - | - | - | - |
Synapse | MT-UNet [33] | 78.59 | 26.59 | 87.92 | 64.99 | 81.47 | 77.29 | 93.06 | 59.46 | 87.75 | 76.81 |
Synapse | MEW-UNet [30] | 78.92 | 16.44 | 86.68 | 65.32 | 82.87 | 80.02 | 93.63 | 58.36 | 90.19 | 74.26 |
Synapse | VM-UNet | 81.08 | 19.21 | 86.40 | 69.41 | 86.16 | 82.76 | 94.17 | 58.80 | 89.51 | 81.40 |
Dataset | Model | mIoU(%)↑ | DSC(%)↑ | Acc(%)↑ | Spe(%)↑ | Sen(%)↑ |
---|---|---|---|---|---|---|
Kvasir-SEG | UNetV2 | 84.00 | 91.30 | 97.47 | 99.08 | 88.39 |
Kvasir-SEG | VMUnet | 80.32 | 89.09 | 96.80 | 98.49 | 87.21 |
Kvasir-SEG | VMUnetV2 | 84.15 | 91.34 | 97.52 | 99.25 | 87.71 |
ClinicDB | UNetV2 | 83.85 | 91.21 | 98.59 | 99.16 | 91.99 |
ClinicDB | VMUnet | 81.95 | 90.08 | 98.42 | 99.18 | 89.73 |
ClinicDB | VMUnetV2 | 89.31 | 94.35 | 99.09 | 99.38 | 95.64 |
ColonDB | UNetV2 | 57.29 | 72.85 | 96.19 | 98.43 | 68.46 |
ColonDB | VMUnet | 55.28 | 71.20 | 96.02 | 98.45 | 65.89 |
ColonDB | VMUnetV2 | 60.98 | 75.76 | 96.54 | 98.46 | 72.68 |
ETIS | UNetV2 | 71.90 | 83.65 | 98.35 | 98.61 | 92.96 |
ETIS | VMUnet | 66.41 | 79.81 | 98.26 | 99.33 | 75.79 |
ETIS | VMUnetV2 | 72.29 | 83.92 | 98.47 | 98.96 | 88.07 |
CVC-300 | UNetV2 | 82.86 | 90.63 | 99.34 | 99.54 | 93.82 |
CVC-300 | VMUnet | 79.55 | 88.61 | 99.20 | 99.44 | 92.46 |
CVC-300 | VMUnetV2 | 89.31 | 94.35 | 99.08 | 99.38 | 95.6 |
Model | Input size | Params(M)↓ | FLOPs(G)↓ | FPS↑ |
---|---|---|---|---|
UNetV2 | (3, 256, 256) | 25.15 | 5.40 | 32.74 |
VM-Unet | (3, 256, 256) | 34.62 | 7.56 | 20.612 |
VM-UnetV2 | (3, 256, 256) | 17.91 | 4.40 | 32.58 |
参考:
https://github.com/JCruan519/VM-UNet
https://github.com/nobodyplayer1/VM-UNetV2
Dataset | Models | Params(M) | GFLOPs | Liver (DSC) | Liver (mIoU) | Tumor (DSC) | Tumor (mIoU) | Average (DSC) | Average (mIoU) |
---|---|---|---|---|---|---|---|---|---|
LiTS | nnU-Net [8] | 88.62 | 7,240.26 | 95.77 | 91.94 | 68.45 | 56.34 | 82.11 | 74.13 |
LiTS | SegResNet [15] | 18.79 | 1,158.30 | 96.11 | 92.56 | 71.22 | 59.76 | 83.67 | 76.16 |
LiTS | UNETR [7] | 92.62 | 1,891.35 | 94.06 | 88.95 | 48.58 | 37.01 | 71.32 | 62.98 |
LiTS | SwinUNETR [6] | 61.99 | 1,570.32 | 95.24 | 91.07 | 66.67 | 55.09 | 80.95 | 73.08 |
LiTS | U-Mamba [14] | 173.53 | 18,057.20 | 95.94 | 92.33 | 70.05 | 58.42 | 83.00 | 75.37 |
LiTS | LightM-UNet | 1.87 | 457.62 | 96.31 | 92.92 | 72.86 | 62.05 | 84.58 | 77.48 |
Dataset | Models | Params(M) | GFLOPs | DSC(%) | mIoU(%) |
---|---|---|---|---|---|
Montgomery&Shenzhen | nnU-Net [8] | 126.56 | 5,594.98 | 96.13 | 92.66 |
Montgomery&Shenzhen | SegResNet [15] | 6.29 | 748.96 | 95.97 | 92.36 |
Montgomery&Shenzhen | UNETR [7] | 87.51 | 1,267.53 | 95.36 | 91.26 |
Montgomery&Shenzhen | SwinUNETR [6] | 25.12 | 909.26 | 95.37 | 91.31 |
Montgomery&Shenzhen | U-Mamba [14] | 244.10 | 12,521.27 | 95.89 | 92.23 |
Montgomery&Shenzhen | LightM-UNet | 1.09 | 267.19 | 96.17 | 92.74 |
参考:
https://github.com/MrBlankness/LightM-UNet
Dataset | Methods | Parameters (Millions) | GFLOPs | DSC | SE | SP | ACC |
---|---|---|---|---|---|---|---|
ISIC17 | U-Net | 2.009 | 3.224 | 0.8989 | 0.8793 | 0.9812 | 0.9613 |
ISIC17 | SCR-Net | 0.801 | 1.567 | 0.8898 | 0.8497 | 0.9853 | 0.9588 |
ISIC17 | ATTENTION SWIN U-NET | 46.910 | 14.181 | 0.8859 | 0.8492 | 0.9847 | 0.9591 |
ISIC17 | C 2 S D G C^2SDG C2SDG | 22.001 | 7.972 | 0.8938 | 0.8859 | 0.9765 | 0.9588 |
ISIC17 | VM-UNet | 27.427 | 4.112 | 0.9070 | 0.8837 | 0.9842 | 0.9645 |
ISIC17 | MALUNet | 0.175 | 0.083 | 0.8896 | 0.8824 | 0.9762 | 0.9583 |
ISIC17 | LightM-UNet | 0.403 | 0.391 | 0.9080 | 0.8839 | 0.9846 | 0.9649 |
ISIC17 | UltraLight VM-UNet | 0.049 | 0.060 | 0.9091 | 0.9053 | 0.9790 | 0.9646 |
Dataset | Methods | Parameters (Millions) | GFLOPs | DSC | SE | SP | ACC |
---|---|---|---|---|---|---|---|
ISIC18 | U-Net | 2.009 | 3.224 | 0.8851 | 0.8735 | 0.9744 | 0.9539 |
ISIC18 | SCR-Net | 0.801 | 1.567 | 0.8886 | 0.8892 | 0.9714 | 0.9547 |
ISIC18 | ATTENTION SWIN U-NET | 46.910 | 14.181 | 0.8540 | 0.8057 | 0.9826 | 0.9480 |
ISIC18 | C 2 S D G C^2SDG C2SDG | 22.001 | 7.972 | 0.8806 | 0.8970 | 0.9643 | 0.9506 |
ISIC18 | VM-UNet | 27.427 | 4.112 | 0.8891 | 0.8809 | 0.9743 | 0.9554 |
ISIC18 | MALUNet | 0.175 | 0.083 | 0.8931 | 0.8890 | 0.9725 | 0.9548 |
ISIC18 | LightM-UNet | 0.403 | 0.391 | 0.8898 | 0.8829 | 0.9765 | 0.9555 |
ISIC18 | UltraLight VM-UNet | 0.049 | 0.060 | 0.8940 | 0.8680 | 0.9781 | 0.9558 |
Dataset | Methods | Parameters (Millions) | GFLOPs | DSC | SE | SP | ACC |
---|---|---|---|---|---|---|---|
P H 2 PH^2 PH2 | U-Net | 2.009 | 3.224 | 0.9060 | 0.9255 | 0.9440 | 0.9381 |
P H 2 PH^2 PH2 | SCR-Net | 0.801 | 1.567 | 0.8989 | 0.9114 | 0.9446 | 0.9339 |
P H 2 PH^2 PH2 | ATTENTION SWIN U-NET | 46.910 | 14.181 | 0.8850 | 0.8886 | 0.9363 | 0.9213 |
P H 2 PH^2 PH2 | C 2 S D G C^2SDG C2SDG | 22.001 | 7.972 | 0.9030 | 0.9137 | 0.9476 | 0.9367 |
P H 2 PH^2 PH2 | VM-UNet | 27.427 | 4.112 | 0.9033 | 0.9131 | 0.9483 | 0.9369 |
P H 2 PH^2 PH2 | MALUNet | 0.175 | 0.083 | 0.8865 | 0.8922 | 0.9425 | 0.9263 |
P H 2 PH^2 PH2 | LightM-UNet | 0.403 | 0.391 | 0.9156 | 0.9129 | 0.9613 | 0.9457 |
P H 2 PH^2 PH2 | UltraLight VM-UNet | 0.049 | 0.060 | 0.9265 | 0.9345 | 0.9606 | 0.9521 |
参考:
https://github.com/wurenkai/UltraLight-VM-UNet
Dataset | Methods | DSC | SE | SP | ACC |
---|---|---|---|---|---|
ISIC17 | U-Net | 0.8159 | 0.8172 | 0.9680 | 0.9164 |
ISIC17 | U-Net v2 | 0.9149 | 0.9052 | 0.9821 | 0.9670 |
ISIC17 | Att U-Net | 0.8082 | 0.7998 | 0.9776 | 0.9145 |
ISIC17 | ATTENTION SWIN U-Net | 0.8859 | 0.8492 | 0.9847 | 0.9591 |
ISIC17 | TransNorm | 0.8933 | 0.8535 | 0.9859 | 0.9582 |
ISIC17 | MALUNet | 0.8896 | 0.8824 | 0.9762 | 0.9583 |
ISIC17 | MSNet | 0.9067 | 0.8771 | 0.9860 | 0.9647 |
ISIC17 | SCR-Net | 0.8898 | 0.8497 | 0.9853 | 0.9588 |
ISIC17 | META-Unet | 0.9068 | 0.8801 | 0.9836 | 0.9639 |
ISIC17 | C 2 S D G C^2SDG C2SDG | 0.8938 | 0.8859 | 0.9765 | 0.9588 |
ISIC17 | MHorUNet | 0.9132 | 0.8974 | 0.9834 | 0.9666 |
ISIC17 | VM-UNet | 0.9070 | 0.8837 | 0.9842 | 0.9645 |
ISIC17 | H-vmunet (VSS) | 0.9068 | 0.8897 | 0.9823 | 0.9642 |
ISIC17 | H-vmunet (H-VSS) | 0.9172 | 0.9056 | 0.9831 | 0.9680 |
Dataset | Methods | DSC | SE | SP | ACC |
---|---|---|---|---|---|
Spleen | U-Net | 0.9441 | 0.9604 | 0.9989 | 0.9983 |
Spleen | U-Net v2 | 0.9383 | 0.9244 | 0.9990 | 0.9982 |
Spleen | Att U-Net | 0.9321 | 0.9350 | 0.9989 | 0.9979 |
Spleen | ATTENTION SWIN U-Net | 0.7829 | 0.6662 | 0.9994 | 0.9945 |
Spleen | TransNorm | 0.8618 | 0.7938 | 0.9992 | 0.9962 |
Spleen | MALUNet | 0.9310 | 0.9305 | 0.9989 | 0.9979 |
Spleen | MSNet | 0.9521 | 0.9425 | 0.9994 | 0.9986 |
Spleen | SCR-Net | 0.9181 | 0.9122 | 0.9988 | 0.9976 |
Spleen | META-Unet | 0.9233 | 0.8921 | 0.9993 | 0.9978 |
Spleen | C 2 S D G C^2SDG C2SDG | 0.9354 | 0.9263 | 0.9991 | 0.9981 |
Spleen | MHorUNet | 0.9424 | 0.9508 | 0.9989 | 0.9982 |
Spleen | VM-UNet | 0.9418 | 0.9429 | 0.9991 | 0.9982 |
Spleen | H-vmunet (VSS) | 0.9403 | 0.9330 | 0.9992 | 0.9982 |
Spleen | H-vmunet (H-VSS) | 0.9571 | 0.9642 | 0.9992 | 0.9987 |
Dataset | Methods | DSC | SE | SP | ACC |
---|---|---|---|---|---|
CVC-ClinicDB | U-Net | 0.9039 | 0.8926 | 0.9914 | 0.9821 |
CVC-ClinicDB | U-Net v2 | 0.9055 | 0.8861 | 0.9930 | 0.9825 |
CVC-ClinicDB | Att U-Net | 0.8697 | 0.8474 | 0.9894 | 0.9760 |
CVC-ClinicDB | ATTENTION SWIN U-Net | 0.7526 | 0.6503 | 0.9943 | 0.9631 |
CVC-ClinicDB | TransNorm | 0.8845 | 0.8634 | 0.9918 | 0.9801 |
CVC-ClinicDB | MALUNet | 0.8562 | 0.8475 | 0.9862 | 0.9731 |
CVC-ClinicDB | MSNet | 0.9050 | 0.8720 | 0.9932 | 0.9832 |
CVC-ClinicDB | SCR-Net | 0.8951 | 0.8701 | 0.9922 | 0.9807 |
CVC-ClinicDB | META-Unet | 0.8975 | 0.8768 | 0.9919 | 0.9811 |
CVC-ClinicDB | C 2 S D G C^2SDG C2SDG | 0.8967 | 0.8724 | 0.9923 | 0.9810 |
CVC-ClinicDB | MHorUNet | 0.8930 | 0.8803 | 0.9904 | 0.9801 |
CVC-ClinicDB | VM-UNet | 0.8524 | 0.8370 | 0.9867 | 0.9726 |
CVC-ClinicDB | H-vmunet (VSS) | 0.8984 | 0.8768 | 0.9921 | 0.9813 |
CVC-ClinicDB | H-vmunet (H-VSS) | 0.9087 | 0.8803 | 0.9940 | 0.9833 |
参考:
https://github.com/wurenkai/H-vmunet
Methods | Organs in Abdomen CT 3D DSC | Organs in Abdomen CT 3D NSD | Organs in Abdomen MRI 3D DSC | Organs in Abdomen MRI 3D NSD |
---|---|---|---|---|
nnU-Net | 0.8615±0.0790 | 0.8972±0.0824 | 0.8309±0.0769 | 0.8996±0.0729 |
SegResNet | 0.7927±0.1162 | 0.8257±0.1194 | 0.8146±0.0959 | 0.8841±0.0917 |
UNETR | 0.6824±0.1506 | 0.7004±0.1577 | 0.6867±0.1488 | 0.7440±0.1627 |
SwinUNETR | 0.7594±0.1095 | 0.7663±0.1190 | 0.7565±0.1394 | 0.8218±0.1409 |
U-Mamba_Bot | 0.8683±0.0808 | 0.9049±0.0821 | 0.8453±0.0673 | 0.9121±0.0634 |
U-Mamba_Enc | 0.8638±0.0908 | 0.8980±0.0921 | 0.8501±0.0732 | 0.9171±0.0689 |
Methods | Organs in Abdomen CT 2D DSC | Organs in Abdomen CT 2D NSD | Organs in Abdomen MRI 2D DSC | Organs in Abdomen MRI 2D NSD |
---|---|---|---|---|
nnU-Net | 0.7450±0.1117 | 0.8153±0.1145 | 0.6264±0.3024 | 0.6412±0.3074 |
SegResNet | 0.7317±0.1379 | 0.8034±0.1386 | 0.5820±0.3268 | 0.5968±0.3303 |
UNETR | 0.5747±0.1672 | 0.6309±0.1858 | 0.5017±0.3201 | 0.5168±0.3235 |
SwinUNETR | 0.7028±0.1348 | 0.7669±0.1442 | 0.5528±0.3089 | 0.5683±0.3123 |
U-Mamba_Bot | 0.7588±0.1051 | 0.8285±0.1074 | 0.6540±0.3008 | 0.6692±0.3050 |
U-Mamba_Enc | 0.7625±0.1082 | 0.8327±0.1087 | 0.6303±0.3067 | 0.6451±0.3104 |
参考:
https://github.com/bowang-lab/U-Mamba
Methods | Organs in Abdomen CT 3D DSC | Organs in Abdomen CT 3D NSD | Organs in Abdomen MRI 2D DSC | Organs in Abdomen MRI 2D NSD |
---|---|---|---|---|
SegResNet | 79.27 | 82.57 | 73.17 | 80.34 |
nnUNet | 86.15 | 89.72 | 74.50 | 81.53 |
UNETR | 68.24 | 70.04 | 57.47 | 63.09 |
SwinUNETR | 75.94 | 76.63 | 70.28 | 76.69 |
nnFormer | 78.34 | 81.45 | 72.79 | 79.63 |
U-Mamba | 86.38 | 89.80 | 76.25 | 83.27 |
LMa-UNet (Ours) | 86.82 | 90.02 | 77.35 | 83.80 |
参考:
https://github.com/wjh892521292/LMa-UNet
Dataset | Methods | Dice ↑ | IoU ↑ | Acc ↑ | Pre ↑ | Sen ↑ | Spe ↑ | HD ↓ | ASD ↓ |
---|---|---|---|---|---|---|---|---|---|
ACDC MRI Cardiac | UNet | 0.9248 | 0.8645 | 0.9969 | 0.9157 | 0.9364 | 0.9883 | 2.7655 | 0.8180 |
ACDC MRI Cardiac | AttentionUNet | 0.9249 | 0.8647 | 0.9970 | 0.9239 | 0.9260 | 0.9858 | 3.4156 | 0.9765 |
ACDC MRI Cardiac | TransUNet | 0.9196 | 0.8561 | 0.9968 | 0.9187 | 0.9207 | 0.9846 | 2.7742 | 0.8324 |
ACDC MRI Cardiac | Swin-UNet | 0.9188 | 0.8545 | 0.9968 | 0.9151 | 0.9231 | 0.9857 | 3.1817 | 0.9932 |
ACDC MRI Cardiac | Mamba-UNet | 0.9281 | 0.8698 | 0.9972 | 0.9275 | 0.9289 | 0.9859 | 2.4645 | 0.7677 |
Dataset | Methods | Dice ↑ | IoU ↑ | Acc ↑ | Pre ↑ | Sen ↑ | Spe ↑ | HD ↓ | ASD ↓ |
---|---|---|---|---|---|---|---|---|---|
Synapse CT abdominal | UNet | 0.6299 | 0.5198 | 0.9969 | 0.6224 | 0.6541 | 0.9889 | 37.7342 | 10.0725 |
Synapse CT abdominal | AttentionUNet | 0.6069 | 0.4964 | 0.9962 | 0.5959 | 0.6394 | 0.9890 | 74.2449 | 25.8229 |
Synapse CT abdominal | TransUNet | 0.6092 | 0.5017 | 0.9970 | 0.6027 | 0.6318 | 0.9858 | 33.8126 | 10.8979 |
Synapse CT abdominal | Swin-UNet | 0.6178 | 0.5121 | 0.9972 | 0.6126 | 0.6357 | 0.9859 | 30.5414 | 9.2504 |
Synapse CT abdominal | Mamba-UNet | 0.6429 | 0.5405 | 0.9975 | 0.6452 | 0.6603 | 0.9890 | 24.4725 | 6.4717 |
参考:
https://github.com/ziyangwang007/Mamba-UNet
Dataset | Methods | Dice ↑ (WT) | HD95 ↓ (WT) | Dice ↑ (TC) | HD95 ↓ (TC) | Dice ↑(ET) | HD95 ↓ (ET) | Dice ↑ (Avg) | HD95 ↓ (Avg) |
---|---|---|---|---|---|---|---|---|---|
BraTS2023 | SegresNet | 92.02 | 4.07 | 89.10 | 4.08 | 83.66 | 3.88 | 88.26 | 4.01 |
BraTS2023 | UX-Net | 93.13 | 4.56 | 90.03 | 5.68 | 85.91 | 4.19 | 89.69 | 4.81 |
BraTS2023 | MedNeXt | 92.41 | 4.98 | 87.75 | 4.67 | 83.96 | 4.51 | 88.04 | 4.72 |
BraTS2023 | UNETR | 92.19 | 6.17 | 86.39 | 5.29 | 84.48 | 5.03 | 87.68 | 5.49 |
BraTS2023 | SwinUNETR | 92.71 | 5.22 | 87.79 | 4.42 | 84.21 | 4.48 | 88.23 | 4.70 |
BraTS2023 | SwinUNETR-V2 | 93.35 | 5.01 | 89.65 | 4.41 | 85.17 | 4.41 | 89.39 | 4.51 |
BraTS2023 | SegMamba | 93.61 | 3.37 | 92.65 | 3.85 | 87.71 | 3.48 | 91.32 | 3.56 |
Dataset | Dataset | IoU ↑ ( Airway Tree) | DLR ↑ ( Airway Tree) | DBR ↑ ( Airway Tree) |
---|---|---|---|---|
AIIB2023 | SegresNet | 87.49 | 65.07 | 53.91 |
AIIB2023 | UX-Net | 87.55 | 65.56 | 54.04 |
AIIB2023 | MedNeXt | 85.81 | 57.43 | 47.34 |
AIIB2023 | UNETR | 83.22 | 48.03 | 38.73 |
AIIB2023 | SwinUNETR | 87.11 | 63.31 | 52.15 |
AIIB2023 | SwinUNETR-V2 | 87.51 | 64.68 | 53.19 |
AIIB2023 | SegMamba | 88.59 | 70.21 | 61.33 |
Dataset | Methods | Dice ↑ | HD95 ↓ |
---|---|---|---|
CRC-500 | SegresNet | 46.10 | 34.97 |
CRC-500 | UX-Net | 45.73 | 49.73 |
CRC-500 | MedNeXt | 35.93 | 52.54 |
CRC-500 | UNETR | 33.70 | 61.51 |
CRC-500 | SwinUNETR | 38.36 | 55.05 |
CRC-500 | SwinUNETR-V2 | 41.76 | 58.05 |
CRC-500 | SegMamba | 48.02 | 30.89 |
参考:
https://github.com/ge-xing/SegMamba
Dataset | Methods | WT (Dice) | TC (Dice) | ET (Dice) | Average (Dice) | WT (HD95) | TC (HD95) | ET (HD95) | Average (HD95) |
---|---|---|---|---|---|---|---|---|---|
BraTS 2023 | UniMiss[36] | 93.48 | 90.06 | 84.40 | 89.31 | 4.55 | 6.80 | 13.70 | 8.38 |
BraTS 2023 | DIT[37] | 93.49 | 90.22 | 84.38 | 89.36 | 4.21 | 5.27 | 13.64 | 7.71 |
BraTS 2023 | UNETR[21] | 93.33 | 89.89 | 85.19 | 89.47 | 4.76 | 7.27 | 12.78 | 8.27 |
BraTS 2023 | nnUNet[5] | 93.31 | 90.24 | 85.18 | 89.58 | 4.49 | 4.95 | 11.91 | 7.12 |
BraTS 2023 | nnMamba | 93.46 | 90.74 | 85.72 | 89.97 | 4.18 | 5.12 | 10.31 | 6.53 |
Dataset | Methods | Parameter (M) | Flops (G) | mDice (CT-Test) | mNSD (CT-Test) | mDice(MRI-Test) | mNSD(MRI-Test) |
---|---|---|---|---|---|---|---|
AMOS2022 | nnUNet[5] | 31.18 | 680.31 | 89.04 | 78.32 | 67.63 | 59.02 |
AMOS2022 | VNet[38] | 45.65 | 849.96 | 82.92 | 67.56 | 65.64 | 57.37 |
AMOS2022 | CoTr [39] | 41.87 | 668.15 | 80.86 | 66.31 | 60.49 | 51.18 |
AMOS2022 | nnFormer[22] | 150.14 | 425.78 | 85.61 | 72.48 | 62.92 | 54.06 |
AMOS2022 | UNETR[21] | 93.02 | 177.51 | 79.43 | 60.84 | 57.91 | 47.25 |
AMOS2022 | SwinUNetr[40] | 62.83 | 668.15 | 86.32 | 73.83 | 57.50 | 47.04 |
AMOS2022 | nnMamba | 15.55 | 141.14 | 89.63 | 79.73 | 73.98 | 65.13 |
分类:
Dataset | Methods | ACC (NC VS AD) | F1 (NC VS AD) | AUC (NC VS AD) | ACC (sMCI VS pMCI) | F1 (sMCI VS pMCI) | AUC (sMCI VS pMCI) |
---|---|---|---|---|---|---|---|
ANDI | ResNet | 88.40±3.41 | 88.00±2.81 | 94.93±0.72 | 67.96±1.50 | 52.14±1.51 | 74.94±2.18 |
ANDI | DenseNet | 87.95±0.70 | 86.93±0.87 | 94.86±0.40 | 73.12±3.10 | 53.30±2.99 | 76.31±3.09 |
ANDI | ViT | 88.85±1.17 | 87.66±1.72 | 94.12±1.29 | 67.16±3.16 | 51.68±5.72 | 75.08±6.88 |
ANDI | CRATE | 84.69±2.53 | 82.66±3.47 | 91.42±1.43 | 70.63±2.60 | 53.41±2.53 | 76.06±2.98 |
ANDI | nnMamba | 89.41±0.85 | 88.68±0.77 | 95.81±0.59 | 75.79±1.79 | 56.55±2.37 | 76.84±0.84 |
参考:
https://github.com/lhaof/nnMamba
Method | FLOPs(G)↓ | Params(M)↓ | HD(mm)↓ | ASSD(mm)↓ | IoU(%)↑ | SO(%)↑ | DSC(%)↑ |
---|---|---|---|---|---|---|---|
UNet3D | 2223.03 | 16.32 | 113.79 | 22.40 | 70.62 | 70.72 | 36.67 |
DenseVNet | 23.73 | 0.87 | 8.21 | 1.14 | 84.57 | 94.88 | 91.15 |
AttentionUNet3D | 1804 | 2720.79 | 94.48 | 147.10 | 61.10 | 52.52 | 42.49 |
DenseVoxelNet | 402.32 | 1.78 | 41.18 | 3.88 | 81.51 | 92.50 | 89.58 |
MultiResUNet3D | 1505.38 | 17.93 | 74.06 | 8.17 | 76.19 | 81.70 | 65.45 |
UNETR | 229.19 | 93.08 | 107.89 | 17.95 | 74.30 | 73.14 | 81.84 |
SwinUNETR | 912.35 | 62.19 | 82.71 | 7.50 | 83.10 | 86.80 | 89.74 |
TransBTS | 306.80 | 33.15 | 29.03 | 4.10 | 82.94 | 90.68 | 39.32 |
nnFormer | 583.49 | 149.25 | 51.28 | 5.08 | 83.54 | 90.89 | 90.66 |
3D UX-Net | 1754.79 | 53.01 | 108.52 | 19.69 | 75.40 | 73.48 | 84.89 |
PMFSNet3D | 15.14 | 0.63 | 5.57 | 0.79 | 84.68 | 95.10 | 91.30 |
T-Mamba (Ours) | - | - | 1.18 | 0.42 | 88.31 | 97.53 | 93.60 |
参考:
https://github.com/isbrycee/T-Mamba
表格无
参考:
https://github.com/constantinpape/torch-em/tree/main/torch_em/model
Model | Dataset | mIoU(%)↑ | DSC(%)↑ | Acc(%)↑ | Spe(%)↑ | Sen(%)↑ |
---|---|---|---|---|---|---|
UNet | ISIC17 | 76.98 | 86.99 | 95.65 | 97.43 | 86.82 |
UTNetV2 | ISIC17 | 77.35 | 87.23 | 95.84 | 98.05 | 84.85 |
TransFuse | ISIC17 | 79.21 | 88.40 | 96.17 | 97.98 | 87.14 |
MALUNet | ISIC17 | 78.78 | 88.13 | 96.18 | 98.47 | 84.78 |
VM-UNet | ISIC17 | 79.82 | 88.52 | 96.34 | 97.96 | 87.65 |
VM-UNetV2 | ISIC17 | 79.73 | 88.14 | 96.09 | 97.78 | 87.89 |
TM-UNet | ISIC17 | 80.51 | 89.20 | 96.46 | 98.28 | 87.37 |
UNet | ISIC18 | 77.86 | 87.55 | 94.05 | 96.69 | 85.86 |
Unet++ | ISIC18 | 78.31 | 87.83 | 94.02 | 95.75 | 88.65 |
Att-Unet | ISIC18 | 78.43 | 87.91 | 94.13 | 96.23 | 87.60 |
UTNetV2 | ISIC18 | 78.97 | 88.25 | 94.32 | 96.48 | 87.60 |
SANet | ISIC18 | 79.52 | 88.59 | 94.39 | 95.97 | 89.46 |
TransFuse | ISIC18 | 80.63 | 89.27 | 94.66 | 95.74 | 91.28 |
MALUNet | ISIC18 | 80.25 | 89.04 | 94.62 | 96.19 | 89.74 |
UNetV2 | ISIC18 | 80.71 | 89.32 | 94.86 | 96.94 | 88.34 |
VM-Unet | ISIC18 | 80.21 | 88.69 | 94.57 | 96.15 | 90.32 |
VM-UNetV2 | ISIC18 | 80.45 | 88.73 | 94.76 | 96.51 | 88.57 |
TM-UNet | ISIC18 | 81.55 | 89.84 | 95.08 | 96.68 | 89.98 |
Dataset | Model | mIoU(%)↑ | DSC(%)↑ | Acc(%)↑ | Spe(%)↑ | Sen(%)↑ |
---|---|---|---|---|---|---|
VM-UNet | Kvasir-Instrument | 88.67 | 93.99 | 98.90 | 99.55 | 92.51 |
VM-UNetV2 | Kvasir-Instrument | 87.30 | 93.22 | 98.75 | 99.41 | 92.33 |
TM-UNet | Kvasir-Instrument | 89.57 | 94.50 | 98.97 | 99.44 | 94.48 |
VM-UNet | Kvasir-Instrument | 78.66 | 88.05 | 96.61 | 98.96 | 83.27 |
VM-UNetV2 | Kvasir-SEG | 76.99 | 87.00 | 96.12 | 97.81 | 86.55 |
TM-UNet | Kvasir-SEG | 77.83 | 87.53 | 96.37 | 98.37 | 85.02 |
VM-UNet | Kvasir-SEG | 76.53 | 86.71 | 97.92 | 99.05 | 84.89 |
VM-UNetV2 | ClinicDB | 83.80 | 91.19 | 98.59 | 99.22 | 91.35 |
TM-UNet | ClinicDB | 83.82 | 91.20 | 98.59 | 99.25 | 91.10 |
VM-UNet | ClinicDB | 51.17 | 67.70 | 95.55 | 98.19 | 62.67 |
VM-UNetV2 | ColonDB | 51.89 | 68.32 | 95.31 | 97.52 | 67.85 |
TM-UNet | ColonDB | 57.23 | 72.80 | 96.26 | 98.58 | 98.37 |
VM-UNet | ColonDB | 68.57 | 81.35 | 98.68 | 99.12 | 85.89 |
VM-UNetV2 | CVC-300 | 72.30 | 83.92 | 98.81 | 99.03 | 92.51 |
TM-UNet | CVC-300 | 77.79 | 87.51 | 99.11 | 99.32 | 92.94 |
参考:
无代码
论文名:Rotate to Scan: UNet-like Mamba with Triplet SSM Module for Medical Image Segmentation
文章汇总:https://github.com/Event-AHU/Mamba_State_Space_Model_Paper_List
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。