当前位置:   article > 正文

手把手教你用Python绘制神经网络图_神经网络图怎么画

神经网络图怎么画
在这里插入图片描述在这里插入图片描述在这里插入图片描述
  • 接下来教大家如何使用 Python 中的 networkx 库,绘制美观且标准的神经网络。
  • 会根据指定的层和节点数量,绘制不同结构的神经网络。

networkx 库可以用来创建和操作图类型的数据结构,其中包括无向图、有向图、带权图等等。
神经网络可以看做是一种图数据结构,因此可以使用networkx库创建,并进行可视化的操作。


简单示例:绘制一个2层的神经网络

在这里插入图片描述

  1. 首先,需提前安装好networkx库,然后在代码中导入 networkxmatplotlib。然后使用 DiGraph 创建一个有向图G。

  2. 我们要绘制的网络,包括了5个节点,第1层的节点编号为1、2,第2层的是3、4、5,我们使用add_edge,从1向3、4、5,从2向3、4、5,连接一条边。

  3. 为了让绘制的图像看起来像一个神经网络,我们需要为这5个节点设置坐标。创建字典pos,字典的key是节点的名称,字典的value,是节点所在位置。

  4. 最后使用nx.draw函数进行绘制。
    其中G是要绘制的图,
    pos是图中节点的坐标,
    with_labels = True,代表绘制节点的名称
    node_color和edgecolor是节点和边的颜色
    linewidths和width是节点和边的粗细
    node_size是节点的大小

# 在代码中导入networkx 和 matplotlib
import networkx as nx
import matplotlib.pyplot as plt

G = nx.DiGraph()  # 使用DiGraph创建一个有向图G

# 网络包括了5个节点
# 第一层的节点编号为1、2,第2层的是3、4、5
G.add_edge(1, 3)  # 从1到3
G.add_edge(1, 4)  # 从1到4
G.add_edge(1, 5)  # 从1到5
G.add_edge(2, 3)  # 从2到3
G.add_edge(2, 4)  # 从2到4
G.add_edge(2, 5)  # 从2到5

# 创建字典pos,字典的key是节点的名称
# 字典的value,是节点所在位置

# 1号和2号节点在一列
# 3、4、5在一列
# 因此设置1和2的x坐标为0;3、4、5的为1

# 同一组中的节点,可以均匀的分布在同一列上
# 所以我们将1和2的y坐标,设置为0.25和0.75
# 3、4、5的y坐标0.2、0.5、0.8

# {节点名称:(节点x坐标,节点y坐标)}
pos = {
    1: (0, 0.25),  # 节点1的坐标(0,0.25)
    2: (0, 0.75),  # 节点2的坐标(0,0.75)
    3: (1, 0.2),  # 节点3的坐标(1, 0.2)
    4: (1, 0.5),  # 节点4的坐标(1, 0.5)
    5: (1, 0.8),  # 节点5的坐标(1, 0.8)
}

# 使用nx.draw函数进行绘制
nx.draw(G,  # 要绘制的图
        pos,  # 图中节点的坐标
        with_labels=True,  # 绘制节点的名称
        node_color='white',  # 节点的颜色
        edgecolors='black',  # 边的颜色
        linewidths=3,  # 节点的粗细
        width=2,  # 边的粗细
        node_size=1000  # 节点的大小
        )

plt.show()  # 使用show方法显示图形
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47

自定义函数,根据参数自由绘制神经网络

在这里插入图片描述在这里插入图片描述在这里插入图片描述
# 在代码中导入networkx 和 matplotlib
import networkx as nx
import matplotlib.pyplot as plt

G = nx.DiGraph()  # 使用DiGraph创建一个有向图G

# 网络包括了5个节点
# 第一层的节点编号为1、2,第2层的是3、4、5
G.add_edge(1, 3)  # 从1到3
G.add_edge(1, 4)  # 从1到4
G.add_edge(1, 5)  # 从1到5
G.add_edge(2, 3)  # 从2到3
G.add_edge(2, 4)  # 从2到4
G.add_edge(2, 5)  # 从2到5

# 创建字典pos,字典的key是节点的名称
# 字典的value,是节点所在位置

# 1号和2号节点在一列
# 3、4、5在一列
# 因此设置1和2的x坐标为0;3、4、5的为1

# 同一组中的节点,可以均匀的分布在同一列上
# 所以我们将1和2的y坐标,设置为0.25和0.75
# 3、4、5的y坐标0.2、0.5、0.8

# {节点名称:(节点x坐标,节点y坐标)}
pos = {
    1: (0, 0.25),  # 节点1的坐标(0,0.25)
    2: (0, 0.75),  # 节点2的坐标(0,0.75)
    3: (1, 0.2),  # 节点3的坐标(1, 0.2)
    4: (1, 0.5),  # 节点4的坐标(1, 0.5)
    5: (1, 0.8),  # 节点5的坐标(1, 0.8)
}

# 使用nx.draw函数进行绘制
nx.draw(G,  # 要绘制的图
        pos,  # 图中节点的坐标
        with_labels=True,  # 绘制节点的名称
        node_color='white',  # 节点的颜色
        edgecolors='black',  # 边的颜色
        linewidths=3,  # 节点的粗细
        width=2,  # 边的粗细
        node_size=1000  # 节点的大小
        )

plt.show()


# 根据传入的输入层、隐含层、输出层的神经元数量,绘制对应的神经网络
def draw_network_digraph(input_num, hidden_num, output_num):
    G = nx.DiGraph()  # 创建一个图G

    # 连接输入层和隐含层之间的边
    for i in range(input_num):
        for j in range(hidden_num):
            G.add_edge(i, input_num + j)

    # 连接隐含层和输出层之间的边
    for i in range(hidden_num):
        for j in range(output_num):
            G.add_edge(input_num + i, input_num + hidden_num + j)

    pos = dict()  # 计算每个节点的坐标pos
    # 节点的坐标,(x,y)设置为:
    # (0,i-input_num/2)
    # (1,i-hidden_num)/2)
    # (2,i-output_num/2)
    # 根据每一层的节点数量,将节点从中间,向两边分布
    for i in range(0, input_num):
        pos[i] = (0, i - input_num / 2)
    for i in range(0, hidden_num):
        hidden = i + input_num
        pos[hidden] = (1, i - hidden_num / 2)
    for i in range(0, output_num):
        output = i + input_num + hidden_num
        pos[output] = (2, i - output_num / 2)

    # 调用 nx.draw 绘制神经网络
    nx.draw(G,  # 要绘制的图
            pos,  # 图中节点的坐标
            with_labels=False,  # 绘制节点的名称
            node_color='white',  # 节点的颜色
            edgecolors='black',  # 边的颜色
            linewidths=3,  # 节点的粗细
            width=2,  # 边的粗细
            node_size=1000  # 节点的大小
            )


if __name__ == '__main__':
    #   尝试多组参数,绘制不同结构的神经网络
    draw_network_digraph(3, 5, 2)
    plt.show()
    draw_network_digraph(5, 2, 6)
    plt.show()
    draw_network_digraph(1, 10, 1)
    plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小惠珠哦/article/detail/857019
推荐阅读
相关标签
  

闽ICP备14008679号