当前位置:   article > 正文

深度学习入门(三十五)计算性能——编译器和解释器_深度学习代码解释器

深度学习代码解释器

前言

核心内容来自博客链接1博客连接2希望大家多多支持作者
本文记录用,防止遗忘

计算性能——编译器和解释器

教材

目前为止,主要关注的是命令式编程(imperative programming)。 命令式编程使用诸如print、“+”和if之类的语句来更改程序的状态。 考虑下面这段简单的命令式程序:

def add(a, b):
    return a + b

def fancy_func(a, b, c, d):
    e = add(a, b)
    f = add(c, d)
    g = add(e, f)
    return g

print(fancy_func(1, 2, 3, 4))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
'
运行

输出:

10
  • 1
'
运行

Python是一种解释型语言(interpreted language)。因此,当对上面的fancy_func函数求值时,它按顺序执行函数体的操作。也就是说,它将通过对e = add(a, b)求值,并将结果存储为变量e,从而更改程序的状态。接下来的两个语句f = add(c, d)g = add(e, f)也将执行类似地操作,即执行加法计算并将结果存储为变量。 下图说明了数据流。
在这里插入图片描述
尽管命令式编程很方便,但可能效率不高。一方面原因,Python会单独执行这三个函数的调用,而没有考虑add函数在fancy_func中被重复调用。如果在一个GPU(甚至多个GPU)上执行这些命令,那么Python解释器产生的开销可能会非常大。此外,它需要保存ef的变量值,直到fancy_func中的所有语句都执行完毕。这是因为程序不知道在执行语句e = add(a, b)f = add(c, d)之后,其他部分是否会使用变量ef

1 符号式编程

考虑另一种选择符号式编程(symbolic programming),即代码通常只在完全定义了过程之后才执行计算。这个策略被多个深度学习框架使用,包括Theano和TensorFlow(后者已经获得了命令式编程的扩展)。一般包括以下步骤:
1、定义计算流程。
2、将流程编译成可执行的程序。
3、给定输入,调用编译好的程序执行。
这将允许进行大量的优化。首先,在大多数情况下,我们可以跳过Python解释器。从而消除因为多个更快的GPU与单个CPU上的单个Python线程搭配使用时产生的性能瓶颈。其次,编译器可以将上述代码优化和重写为print((1 + 2) + (3 + 4))甚至print(10)。因为编译器在将其转换为机器指令之前可以看到完整的代码,所以这种优化是可以实现的。例如,只要某个变量不再需要,编译器就可以释放内存(或者从不分配内存),或者将代码转换为一个完全等价的片段。下面,我们将通过模拟命令式编程来进一步了解符号式编程的概念。

def add_():
    return '''
def add(a, b):
    return a + b
'''

def fancy_func_():
    return '''
def fancy_func(a, b, c, d):
    e = add(a, b)
    f = add(c, d)
    g = add(e, f)
    return g
'''

def evoke_():
    return add_() + fancy_func_() + 'print(fancy_func(1, 2, 3, 4))'

prog = evoke_()
print(prog)
y = compile(prog, '', 'exec')
exec(y)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

输出:

def add(a, b):
    return a + b

def fancy_func(a, b, c, d):
    e = add(a, b)
    f = add(c, d)
    g = add(e, f)
    return g
print(fancy_func(1, 2, 3, 4))
10
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
'
运行

命令式(解释型)编程和符号式编程的区别如下:

  • 命令式编程更容易使用。在Python中,命令式编程的大部分代码都是简单易懂的。命令式编程也更容易调试,这是因为无论是获取和打印所有的中间变量值,或者使用Python的内置调试工具都更加简单。
  • 符号式编程运行效率更高,更易于移植。符号式编程更容易在编译期间优化代码,同时还能够将程序移植到与Python无关的格式中,从而允许程序在非Python环境中运行,避免了任何潜在的与Python解释器相关的性能问题。
  • 2 混合式编程

    历史上,大部分深度学习框架都在命令式编程与符号式编程之间进行选择。例如,Theano、TensorFlow(灵感来自前者)、Keras和CNTK采用了符号式编程。相反地,Chainer和PyTorch采取了命令式编程。在后来的版本更新中,TensorFlow2.0和Keras增加了命令式编程

    由于PyTorch仅仅采用了命令式编程,所以本节剩余部分可跳过,感兴趣的可以去看原文。

    如上所述,PyTorch是基于命令式编程并且使用动态计算图。为了能够利用符号式编程的可移植性和效率,开发人员思考能否将这两种编程模型的优点结合起来,于是就产生了torchscript。torchscript允许用户使用纯命令式编程进行开发和调试,同时能够将大多数程序转换为符号式程序,以便在需要产品级计算性能和部署时使用。

    3 Sequential的混合式编程

    要了解混合式编程的工作原理,最简单的方法是考虑具有多层的深层网络。按照惯例,Python解释器需要执行所有层的代码来生成一条指令,然后将该指令转发到CPU或GPU。对于单个的(快速的)计算设备,这不会导致任何重大问题。另一方面,如果我们使用先进的8-GPU服务器,比如AWS P3dn.24xlarge实例,Python将很难让所有的GPU都保持忙碌。在这里,瓶颈是单线程的Python解释器。让我们看看如何通过将Sequential替换为HybridSequential来解决代码中这个瓶颈。首先,我们定义一个简单的多层感知机。

    import torch
    from torch import nn
    from d2l import torch as d2l
    
    
    # 生产网络的工厂模式
    def get_net():
        net = nn.Sequential(nn.Linear(512, 256),
                nn.ReLU(),
                nn.Linear(256, 128),
                nn.ReLU(),
                nn.Linear(128, 2))
        return net
    
    x = torch.randn(size=(1, 512))
    net = get_net()
    net(x)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17

    输出:

    tensor([[ 0.0244, -0.0361]], grad_fn=<AddmmBackward0>)
    
    • 1

    通过使用torch.jit.script函数来转换模型,我们就有能力编译和优化多层感知机中的计算,而模型的计算结果保持不变

    net = torch.jit.script(net)
    net(x)
    
    • 1
    • 2

    输出:

    tensor([[ 0.0244, -0.0361]], grad_fn=<AddmmBackward0>)
    
    • 1

    我们编写与之前相同的代码,再使用torch.jit.script简单地转换模型,当完成这些任务后,网络就将得到优化(我们将在下面对性能进行基准测试)。

    3.1 通过混合式编程加速
    class Benchmark:
        """用于测量运行时间"""
        def __init__(self, description='Done'):
            self.description = description
    
        def __enter__(self):
            self.timer = d2l.Timer()
            return self
    
        def __exit__(self, *args):
            print(f'{self.description}: {self.timer.stop():.4f} sec')
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    '
    运行

    现在我们可以调用网络两次,一次使用torchscript,一次不使用torchscript。

    net = get_net()
    with Benchmark('无torchscript'):
        for i in range(1000): net(x)
    
    net = torch.jit.script(net)
    with Benchmark('有torchscript'):
        for i in range(1000): net(x)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7

    输出;

    无torchscript: 1.8929 sec
    有torchscript: 1.8184 sec
    
    • 1
    • 2

    如以上结果所示,在nn.Sequential的实例被函数torch.jit.script脚本化后,通过使用符号式编程提高了计算性能。

    3.2 序列化

    编译模型的好处之一是我们可以将模型及其参数序列化(保存)到磁盘。这允许这些训练好的模型部署到其他设备上,并且还能方便地使用其他前端编程语言。同时,通常编译模型的代码执行速度也比命令式编程更快。

    4 小结

    命令式编程使得新模型的设计变得容易,因为可以依据控制流编写代码,并拥有相对成熟的Python软件生态。

    符号式编程要求我们先定义并且编译程序,然后再执行程序,其好处是提高了计算性能。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小惠珠哦/article/detail/933004
推荐阅读
相关标签
  

闽ICP备14008679号