当前位置:   article > 正文

RAG 工业落地方案框架(Qanything、RAGFlow、FastGPT、智谱RAG)细节比对!CVPR自动驾驶最in挑战赛赛道,全球冠军被算力选手夺走了_ragflow vs fastgpt

ragflow vs fastgpt

RAG 工业落地方案框架(Qanything、RAGFlow、FastGPT、智谱RAG)细节比对!CVPR自动驾驶最in挑战赛赛道,全球冠军被算力选手夺走了。

在这里插入图片描述

本文详细比较了四种 RAG 工业落地方案 ——Qanything、RAGFlow、FastGPT 和智谱 RAG,重点分析了它们在知识处理、召回模块、重排模块、大模型处理、Web 服务和切词处理等方面的具体实现。Qanything 在 rerank 模块设计上表现出色;RAGFlow 在文档处理方面优势明显;FastGPT 提供了高度动态配置的模块;智谱 RAG 则在领域数据上的模型微调上有着特殊的优势。每个方案都有其独特的技术细节和适用场景,强调了在实际应用中,选择合适的技术实现以及对细节的精细化处理对于项目的成功至关重要。

用强化学习解决现实问题:Stochasticity、Scale、GAE与Curriculum Learning
文章探讨了强化学习在现实问题解决中的应用,特别是如何处理随机性(Stochasticity)和规模(Scale)问题。作者通过实例说明了在手机操作系统中完成查资料和购物任务的 RL 模型,强调了显式建模随机性的重要性。为了应对数据需求,开发了多机分布式并行脚本以大规模收集数据。此外,文章提出了使用任务完成情况作为整体轨迹的奖励,而非单步奖励,以简化评估过程。
在模型选择上,作者使用了参数量为 1.5B 的小模型,并通过与 GPT-4 的比较展示了其性能优势。文章还提供了 base 模型选择的建议,即选择性能不差且大小适中的模型,以便于训练。算法方面,提出了 Filtered AWR 和 GAE 的简化版本,以及 Automatic Curriculum Learning 策略,这些都是为了更好地适应现实问题的复杂性。实验结果显示,所提出的方法在性能上超越了现有的 agent,如 GPT-4 和 Gemini,并在相同数据集上也表现出色。作者最终开源了代码和模型,邀请社区参与和验证这些研究成果。

在这里插入图片描述

Chameleon和Florence-2
Chameleon 模型采用前融合技术,通过单一 tokenizer 同时处理视觉和语言信息,实现端到端的多模态学习。它使用 VQGAN 进行图像编码,将图像转换为离散的 tokens,并与文本 tokens 一起输入到 Transformer 模型中。这种方法使得不同模态的特征能够在同一表征空间内被有效地关联,提高了模型学习的效率。
Florence-2 模型虽然采用后融合方式,但在多 CV 任务上展现了卓越的性能,能够处理包括 VQA、视觉地面化、OCR 等多种任务。它的模型规模较小,但通过多任务学习,取得了与大型模型相当的效果。Florence-2 的成功表明,多模态模型在处理复杂的计算机视觉任务时,不仅要关注前融合技术,还要优化模型结构和训练方法,以适应实际应用的需求。

在这里插入图片描述

Agent Attention:集成 Softmax 和 Linear 注意力机制
注意力机制 (Attention module) 是 Transformers 中的关键组成部分。虽然全局的注意力机制具有很高的表征能力,但其计算成本较大,限制了其在各种场景下的适用性。本文提出一种新的注意力范式 Agent Attention,目的在计算效率和表征能力之间取得良好的平衡。具体而言,Agent Attention 表示为四元组 ( 本文内容由网友自发贡献,转载请注明出处:【wpsshop博客】

推荐阅读
相关标签