赞
踩
发票抽取问答、海报抽取问答、网页抽取问答、表格抽取问答、试卷抽取问答。
- from pprint import pprint
- from paddlenlp import Taskflow
- import gradio as gr
- from paddlenlp import Taskflow
- import numpy as np
- from PIL import Image
- import uuid
-
- docprompt = Taskflow("document_intelligence")
-
- def model_inference(image, prompt):
- prompt = prompt.split("?")[:-1]
-
- # TODO:非得要个网络或本地地址,ndarray不行
- img = Image.fromarray(np.uint8(image))
- filename = "./image/" + str(uuid.uuid4()) + ".png"
- img.save(filename)
-
- res = docprompt([{"doc": filename, "prompt": prompt}])
- json_out = {"result": res}
- return image,json_out
-
-
- def clear_all():
- return None, None, None
-
-
- with gr.Blocks() as demo:
- gr.Markdown("ERNIE-Layout")
- with gr.Column(scale=1, min_width=100):
- img_in = gr.Image(value="https://bj.bcebos.com/paddlenlp/taskflow/document_intelligence/images/invoice.jpg",
- label="Input")
-
- text = gr.Textbox(
- value="发票号码是多少?校验码是多少?",
- label="输入问题:",
- lines=2)
-
- with gr.Row():
- btn1 = gr.Button("Clear")
- btn2 = gr.Button("Submit")
- json_out = gr.JSON(label="Information Extraction Output")
-
- img_out = gr.Image(label="Output").style(height=400)
-
- btn1.click(fn=clear_all, inputs=None, outputs=[img_in, img_out, json_out])
- btn2.click(fn=model_inference, inputs=[img_in, text], outputs=[img_out,json_out])
- gr.Button.style(1)
-
- demo.launch(server_port=7007)

Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。