赞
踩
之前文章中所介绍的爬虫都是对单个URL进行解析和爬取,url数量少不费时,但是如果我们需要爬取的网页url有成千上万或者更多,那怎么办?
使用for循环对所有的url进行遍历访问?
嗯,想法很好,但是如果url过多,爬取完所有的数据会不会太过于耗时了?
对此我们可以使用并发来对URL进行访问以爬取数据。
一般而言,在单机上我们使用三种并发方式:多线程(threading)
多进程(multiprocessing)
协程(gevent)
对于以上三种方法的具体概念解释和说明,各位可以自行网上搜索了解,相信会比我解释得清楚,所以在此就不对它们进行解释说明了。
本系列文章有两个重点,一个是实战,一个是入门,既为实战,理论性的东西就描述得比较少;既为入门,所讲述的都是简单易懂易操作的东西,高深的技术还请入门之后自行探索,那样也会成长得更快。
那么下面,开始并发爬取的实战入门,以多进程为例,并发爬取智联招聘的招聘信息。
一、分析URL和页面结构
1、搜索全国范围内职位名包含“Python”的职位招聘
我们不分职业类别、不分行业类别,工作地点选为全国,职位名为“Python”,对招聘信息进行搜索,结果如下图:
我们注意图中三个红框的信息:搜索结果的url结构;(构造url地址进行for循环遍历)
搜索结果的条数;(判断url的数量)
采集的信息的主体;(解析数据)
通过筛选url参数,我们确定了需要爬取的基本URL为:
http://sou.zhaopin.com/jobs/searchresult.ashx?jl=全国&kw=python&kt=3&p=2
其中
http://sou.zhaopin.com/jobs/searchresult.ashx
为请求地址和目录
jl:工作地点参数
kw:搜索的关键字
kt:以职位名搜索
p:页数
我们可以发现,除了页数会变化之外,其余的参数值都是固定的值。我们来确定一下搜索结果的总页数。
因为网页上有提示一共有多少个职位满足条件,我们拿总职位数除以单页显示的职位数量即可知道搜索结果的页数。
# coding:utf-8
import requests
from bs4 import BeautifulSoup
import re
url = 'http://sou.zhaopin.com/jobs/searchresult.ashx?jl=全国&kw=python&p=1&kt=3'
wbdata = requests.get(url).content
soup = BeautifulSoup(wbdata, 'lxml')
items = soup.select("div#newlist_list_content_table > table")
count = len(items) - 1
# 每页职位信息数量
print(count)
job_count = re.findall(r"共(.*?)个职位满足条件", str(soup))[0]
# 搜索结果页数
pages = (int(job_count) // count) + 1
print(pages)
结果返回每页60条职位信息,一共有14页。
那么我们的待爬取的url地址就有14个,url地址中参数p的值分别从1到14,这么少的url,使用for循环也可以很快完成,但在此我们使用多进程进行演示。
二、在爬虫中使用多进程
先上代码:
# coding:utf-8
import requests
from bs4 import BeautifulSoup
from multiprocessing import Pool
def get_zhaopin(page):
url = 'http://sou.zhaopin.com/jobs/searchresult.ashx?jl=全国&kw=python&p={0}&kt=3'.format(page)
print("第{0}页".format(page))
wbdata = requests.get(url).content
soup = BeautifulSoup(wbdata,'lxml')
job_name = soup.select("table.newlist > tr > td.zwmc > div > a")
salarys = soup.select("table.newlist > tr > td.zwyx")
locations = soup.select("table.newlist > tr > td.gzdd")
times = soup.select("table.newlist > tr > td.gxsj > span")
for name, salary, location, time in zip(job_name, salarys, locations, times):
data = {
'name': name.get_text(),
'salary': salary.get_text(),
'location': location.get_text(),
'time': time.get_text(),
}
print(data)
if __name__ == '__main__':
pool = Pool(processes=2)
pool.map_async(get_zhaopin,range(1,pages+1))
pool.close()
pool.join()
结果如下:
因为除了使用了多进程之外,其他的代码与之前文章介绍的方法大同小异,所以在此只介绍一下多进程的核心代码:
from multiprocessing import Pool
multiprocessing是Python自带的一个多进程模块,在此我们使用其Pool方法。
if __name__ == '__main__':
pool = Pool(processes=2)
pool.map_async(get_zhaopin,range(1,pages+1))
pool.close()
pool.join()实例化一个进程池,设置进程为2;
调用进程池的map_async()方法,接收一个函数(爬虫函数)和一个列表(url列表)
如此,在爬虫中使用多进程进行并发爬取就搞定了,更多高级、复杂强大的方法,还请各位参考其他文档资料。
=======================================================================
文章首发微信公众号:州的先生
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。