当前位置:   article > 正文

基于Sentence Transformer微调向量模型_向量模型 微调

向量模型 微调

Sentence Transformer库升级到了V3,其中对模型训练部分做了优化,使得模型训练和微调更加简单了,跟着官方教程走了一遍,顺利完成向量模型的微调,以下是对官方教程的精炼和总结。

一 所需组件

使用Sentence Transformer库进行向量模型的微调需要如下的组件:

  1. 数据数据: 用于训练和评估的数据。
  2. 损失函数 : 一个量化模型性能并指导优化过程的函数。
  3. 训练参数 (可选): 影响训练性能和跟踪/调试的参数。
  4. 评估器 (可选): 一个在训练前、中或后评估模型的工具。
  5. 训练器 : 将模型、数据集、损失函数和其他组件整合在一起进行训练。

二 数据集

大部分微调用到的数据都是本地的数据集,因此这里只提供本地数据的处理方法。如用其他在线数据可参考相对应的API。

1 数据类型

常见的数据类型为json、csv、parquet,可以使用load_dataset进行加载:

from datasets import load_dataset

csv_dataset = load_dataset("csv", data_files="my_file.csv")
json_dataset = load_dataset("json", data_files="my_file.json")
parquet_dataset = load_dataset("parquet", data_files="my_file.parquet")
  • 1
  • 2
  • 3
  • 4
  • 5

2 数据格式

数据格式需要与损失函数相匹配。如果损失函数需要计算三元组,则数据集的格式为['anchor', 'positive', 'negative'],且顺序不能颠倒。如果损失函数计算的是句子对的相似度或者标签类别,则数据集中需要包含['label']或者['score'],其余列都会作为损失函数的输入。常见的数据格式和损失函数选择见表1。

三 损失函数

从链接整理了一些常见的数据格式和匹配的损失函数

InputsLabelsAppropriate Loss Functions
(sentence_A, sentence_B) pairsclassSoftmaxLoss
(anchor, positive) pairsnoneMultipleNegativesRankingLoss
(anchor, positive/negative) pairs1 if positive, 0 if negativeContrastiveLoss / OnlineContrastiveLoss
(sentence_A, sentence_B) pairsfloat similarity scoreCoSENTLoss / AnglELoss / CosineSimilarityLoss
(anchor, positive, negative) tripletsnoneMultipleNegativesRankingLoss / TripletLoss

表1 常见的数据格式和损失函数

四 训练参数

配置训练参数主要是用于提升模型的训练效果,同时可以显示训练过程的进度或者其他参数信息,方便调试。

1 影响训练效果的参数

learning_ratelr_scheduler_typewarmup_rationum_train_epochs
max_stepsper_device_train_batch_sizeper_device_evak_batch_sizeauto_find_batch_size
fp16bf16gradient_accumulation_stepsgradient_checkpointing
eval_accmulation_stepsoptimbatch_samplermulti_dataset_batch_sampler

2 观察训练过程的参数

eval_strategyeval_stepssave_strategysave_steps
save_total_limitload_best_model_at_endreport_to log_evallog_eval
logging_stepspush_to_hubhub_model_idhub_strategy
hub_private_repo

五 评估器

评估器用于评估模型训练过程中的损失。同损失函数的选择一样,它也需要与数据格式相匹配,以下是评估器的选择依据。

EvaluatorRequired Data
BinaryClassificationEvaluatorPairs with class labels
EmbeddingSimilarityEvaluatorPairs with similarity scores
InformationRetrievalEvaluatorQueries (qid => question), Corpus (cid => document), and relevant documents (qid => set[cid])
MSEEvaluatorSource sentences to embed with a teacher model and target sentences to embed with the student model. Can be the same texts.
ParaphraseMiningEvaluatorMapping of IDs to sentences & pairs with IDs of duplicate sentences.
RerankingEvaluatorList of {‘query’: ‘…’, ‘positive’: […], ‘negative’: […]} dictionaries.
TranslationEvaluatorPairs of sentences in two separate languages.
TripletEvaluator(anchor, positive, negative) pairs.

六 训练器

训练器的作用是把先前的组件组合在一起使用。我们仅需要指定模型、训练数据、损失函数、训练参数(可选)、评估器(可选),就可以开始模型的训练。

from datasets import load_dataset
from sentence_transformers import (
SentenceTransformer,
SentenceTransformerTrainer,
SentenceTransformerTrainingArguments,
SentenceTransformerModelCardData,
)
from sentence_transformers.losses import MultipleNegativesRankingLoss
from sentence_transformers.training_args import BatchSamplers
from sentence_transformers.evaluation import TripletEvaluator

# 1. Load a model to finetune with 2. (Optional) model card data
model = SentenceTransformer(
    "microsoft/mpnet-base",
    model_card_data=SentenceTransformerModelCardData(
        language="en",
        license="apache-2.0",
        model_name="MPNet base trained on AllNLI triplets",
    )
)

# 3. Load a dataset to finetune on
dataset = load_dataset("sentence-transformers/all-nli", "triplet")
train_dataset = dataset["train"].select(range(100_000))
eval_dataset = dataset["dev"]
test_dataset = dataset["test"]

# 4. Define a loss function
loss = MultipleNegativesRankingLoss(model)

# 5. (Optional) Specify training arguments
args = SentenceTransformerTrainingArguments(
    # Required parameter:
    output_dir="models/mpnet-base-all-nli-triplet",
    # Optional training parameters:
    num_train_epochs=1,
    per_device_train_batch_size=16,
    per_device_eval_batch_size=16,
    learning_rate=2e-5,
    warmup_ratio=0.1,
    fp16=True,  # Set to False if you get an error that your GPU can't run on FP16
    bf16=False,  # Set to True if you have a GPU that supports BF16
    batch_sampler=BatchSamplers.NO_DUPLICATES,  # MultipleNegativesRankingLoss benefits from no duplicate samples in a batch
    # Optional tracking/debugging parameters:
    eval_strategy="steps",
    eval_steps=100,
    save_strategy="steps",
    save_steps=100,
    save_total_limit=2,
    logging_steps=100,
    run_name="mpnet-base-all-nli-triplet",  # Will be used in W&B if `wandb` is installed
)

# 6. (Optional) Create an evaluator & evaluate the base model
dev_evaluator = TripletEvaluator(
    anchors=eval_dataset["anchor"],
    positives=eval_dataset["positive"],
    negatives=eval_dataset["negative"],
    name="all-nli-dev",
)
dev_evaluator(model)

# 7. Create a trainer & train
trainer = SentenceTransformerTrainer(
    model=model,
    args=args,
    train_dataset=train_dataset,
    eval_dataset=eval_dataset,
    loss=loss,
    evaluator=dev_evaluator,
)
trainer.train()

# (Optional) Evaluate the trained model on the test set
test_evaluator = TripletEvaluator(
    anchors=test_dataset["anchor"],
    positives=test_dataset["positive"],
    negatives=test_dataset["negative"],
    name="all-nli-test",
)
test_evaluator(model)

# 8. Save the trained model
model.save_pretrained("models/mpnet-base-all-nli-triplet/final")
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小桥流水78/article/detail/965647
推荐阅读
相关标签
  

闽ICP备14008679号