当前位置:   article > 正文

文本相似度计算_文本聚类判断两文本相似度

文本聚类判断两文本相似度

一、简介

文本相似度是进行文本聚类的基础,和传统的结构化数值数据的聚类方法相似,文本聚类是通过计算文本之间的“距离”来表示文本之间的相似度,并产生聚类。文本相似度的常用计算反法有余弦定理。但是文本数据和普通的数据不同,它是一种半结构化的数据,在进行聚类之前必须要对文本数据源进行处理,如分词、向量化表示等,其目的就是使用向量化的数值来表达这些半结构化的文本数据。使其适用于文本分析。

二、TF-IDF算法

在一份给定的文件里,词频(term frequency,TF)指的是某一个给定的词语在该文本中出现的次数(该次数一般会归一化处理,以防止它偏向长文本)。

在给定的文件里,词频

其中表示该词在文件

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小舞很执着/article/detail/794601
推荐阅读
相关标签
  

闽ICP备14008679号