赞
踩
对于有n个顶点的连通图,至少有n-1条边,而生成树中恰好有n-1条边,所以连通图的生成树是该图的极小连通子图。若在图的生成树中任意加一条边,则必然形成回路。下图(a)所示的无向图的一个生成树如下图(b)所示,下图(c)不是生成树,因为存在回路。
图的生成树不是唯一的。从不同的顶点出发,选择不同的存储方式,用不同的求解方法,可以得到不同的生成树。对于非连通图而言,每个连通分量中的顶点集和遍历时走过的边集一起构成若干棵生成树,把它们称为非连通图的生成树森林。按深度和广度优先搜索进行遍历将得到不同的生成树,分别称为深度优先生成树和广度优先生成树。例如,下图所示的是上图(a)的一棵深度优先生成树和一棵广度优先生成树。
对于连通网来说,边是带权值的,生成树的各边也带权值,因此把生成树各边的权值总和称为生成树的权,把权值最小的生成树称为最小生成树。求解最小生成树有许多实际的应用。
常用的最小生成树求解算法有普里姆(Prim)算法和克鲁斯卡尔(Kruskal)算法。
(1)普里姆(Prim)算法。
假设N=(V,E)是连通网,TE是N上最小生成树中边的集合。算法从顶点集合U={u0}(u0∈V)、边的集合TE={}开始,重复执行下述操作:在所有u∈U, v∈V-U的边(u,v)∈E中找一条代价最小的边(u0,v0),把这条边并入集合TE,同时将v0并入集合U,直到U=V时为止。此时TE中必有n-1条边,T=(V,{TE})为N的最小生成树。
由此可知,普里姆算法构造最小生成树的过程是以一个顶点集合U={u0}作为初态,不断寻找与U中顶点相邻且代价最小的边的另一个顶点,扩充U集合直到U=V时为止。
用普里姆算法构造最小生成树的过程如下图所示。
普里姆算法的时间复杂度为0(n2),与图中的边数无关,因此该算法适合于求边稠密的网的最小生成树。
(2)克鲁斯卡尔(Kruskal)算法。
克鲁斯卡尔求最小生成树的算法思想为:假设连通网N(V,E),令最小生成树的初始状态为只有 n 个项点而无边的非连通图 T=(V,{}),图中每个顶点自成一个连通分量。在E选择代价最小的边,若该边依附的项点落在T中不同的连通分量上,则将此边加入到T中,否则舍去此边而选择下一条代价最小的边。依此类推,直到T中所有顶点都在同一连通分量上为止。
用克鲁斯卡尔算法构造上图(a)所示网的最小生成树的过程如下图所示。
克售斯卡尔算法的时间复杂度为 O(e㏒e),与图中的顶点数无关,因此该算法适合于求边稀疏的网的最小生成树。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。