赞
踩
概念:建立在关系模型基础上,由多张相互连接的二维表组成的数据库。
特点:
1、使用表存储数据,格式统一,便于维护
2、使用SQL语言操作,标准统一,使用方便
数据定义语言
查询所有数据库:
SHOW DATABASES;
查询当前数据库:
SELECT DATABASE();
创建数据库:
CREATE DATABASE [ IF NOT EXISTS ] 数据库名 [ DEFAULT CHARSET 字符集] [COLLATE 排序规则 ];
删除数据库:
DROP DATABASE [ IF EXISTS ] 数据库名;
使用数据库:
USE 数据库名;
查询当前数据库所有表:
SHOW TABLES;
查询表结构:
DESC 表名;
查询指定表的建表语句:
SHOW CREATE TABLE 表名;
创建表:
CREATE TABLE 表名(
字段1 字段1类型 [COMMENT 字段1注释],
字段2 字段2类型 [COMMENT 字段2注释],
字段3 字段3类型 [COMMENT 字段3注释],
...
字段n 字段n类型 [COMMENT 字段n注释]
)[ COMMENT 表注释 ];
所有的要用英文的格式
最后一个字段后面没有逗号
添加字段:
ALTER TABLE 表名 ADD 字段名 类型(长度) [COMMENT 注释] [约束];
例:ALTER TABLE emp ADD nickname varchar(20) COMMENT '昵称';
修改数据类型:
ALTER TABLE 表名 MODIFY 字段名 新数据类型(长度);
修改字段名和字段类型:
ALTER TABLE 表名 CHANGE 旧字段名 新字段名 类型(长度) [COMMENT 注释] [约束];
例:将emp表的nickname字段修改为username,类型为varchar(30)
ALTER TABLE emp CHANGE nickname username varchar(30) COMMENT '昵称';
删除字段:
ALTER TABLE 表名 DROP 字段名;
修改表名:
ALTER TABLE 表名 RENAME TO 新表名
删除表:
DROP TABLE [IF EXISTS] 表名;
删除表,并重新创建该表:
TRUNCATE TABLE 表名;
指定字段:
INSERT INTO 表名 (字段名1, 字段名2, ...) VALUES (值1, 值2, ...);
全部字段:
INSERT INTO 表名 VALUES (值1, 值2, ...);
批量添加数据:
INSERT INTO 表名 (字段名1, 字段名2, ...) VALUES (值1, 值2, ...), (值1, 值2, ...), (值1, 值2, ...);
INSERT INTO 表名 VALUES (值1, 值2, ...), (值1, 值2, ...), (值1, 值2, ...);
修改数据:
UPDATE 表名 SET 字段名1 = 值1, 字段名2 = 值2, ... [ WHERE 条件 ];
例:
UPDATE emp SET name = 'Jack' WHERE id = 1;
删除数据:
DELETE FROM 表名 [ WHERE 条件 ];
语法:
SELECT
字段列表
FROM
表名字段
WHERE
条件列表
GROUP BY
分组字段列表
HAVING
分组后的条件列表
ORDER BY
排序字段列表
LIMIT
分页参数
查询多个字段:
SELECT 字段1, 字段2, 字段3, ... FROM 表名;
SELECT * FROM 表名;
设置别名:
SELECT 字段1 [ AS 别名1 ], 字段2 [ AS 别名2 ], 字段3 [ AS 别名3 ], ... FROM 表名;
SELECT 字段1 [ 别名1 ], 字段2 [ 别名2 ], 字段3 [ 别名3 ], ... FROM 表名;
去除重复记录:
SELECT DISTINCT 字段列表 FROM 表名;
转义:
SELECT * FROM 表名 WHERE name LIKE '/_张三' ESCAPE '/'
/ 之后的_不作为通配符
语法:
SELECT 字段列表 FROM 表名 WHERE 条件列表;
条件:
比较运算符 | 功能 |
---|---|
> | 大于 |
>= | 大于等于 |
< | 小于 |
<= | 小于等于 |
= | 等于 |
<> 或 != | 不等于 |
BETWEEN … AND … | 在某个范围内(含最小、最大值) |
IN(…) | 在in之后的列表中的值,多选一 |
LIKE 占位符 | 模糊匹配(_匹配单个字符,%匹配任意个字符) |
IS NULL | 是NULL |
逻辑运算符 | 功能 |
---|---|
AND 或 && | 并且(多个条件同时成立) |
OR 或 || | 或者(多个条件任意一个成立) |
NOT 或 ! | 非,不是 |
例子:
-- 年龄等于30 select * from employee where age = 30; -- 年龄小于30 select * from employee where age < 30; -- 小于等于 select * from employee where age <= 30; -- 没有身份证 select * from employee where idcard is null or idcard = ''; -- 有身份证 select * from employee where idcard; select * from employee where idcard is not null; -- 不等于 select * from employee where age != 30; -- 年龄在20到30之间 select * from employee where age between 20 and 30; select * from employee where age >= 20 and age <= 30; -- 下面语句不报错,但查不到任何信息 select * from employee where age between 30 and 20; -- 性别为女且年龄小于30 select * from employee where age < 30 and gender = '女'; -- 年龄等于25或30或35 select * from employee where age = 25 or age = 30 or age = 35; select * from employee where age in (25, 30, 35); -- 姓名为两个字 select * from employee where name like '__'; -- 身份证最后为X select * from employee where idcard like '%X';
常见聚合函数:
函数 | 功能 |
---|---|
count | 统计数量 |
max | 最大值 |
min | 最小值 |
avg | 平均值 |
sum | 求和 |
语法:
SELECT 聚合函数(字段列表) FROM 表名;
例:
SELECT count(id) from employee where workaddress = "广东省";
语法:
SELECT 字段列表 FROM 表名 [ WHERE 条件 ] GROUP BY 分组字段名 [ HAVING 分组后的过滤条件 ];
where 和 having 的区别:
例子:
-- 根据性别分组,统计男性和女性数量(只显示分组数量,不显示哪个是男哪个是女)
select count(*) from employee group by gender;
-- 根据性别分组,统计男性和女性数量
select gender, count(*) from employee group by gender;
-- 根据性别分组,统计男性和女性的平均年龄
select gender, avg(age) from employee group by gender;
-- 年龄小于45,并根据工作地址分组
select workaddress, count(*) from employee where age < 45 group by workaddress;
-- 年龄小于45,并根据工作地址分组,获取员工数量大于等于3的工作地址
select workaddress, count(*) address_count from employee where age < 45 group by workaddress having address_count >= 3;
语法:
SELECT 字段列表 FROM 表名 ORDER BY 字段1 排序方式1, 字段2 排序方式2;
排序方式:
例子:
-- 根据年龄升序排序
SELECT * FROM employee ORDER BY age ASC;
SELECT * FROM employee ORDER BY age;
-- 两字段排序,根据年龄升序排序,入职时间降序排序(如果年龄相同那么就按这个)
SELECT * FROM employee ORDER BY age ASC, entrydate DESC;
如果是多字段排序,当第一个字段值相同时,才会根据第二个字段进行排序
语法:
SELECT 字段列表 FROM 表名 LIMIT 起始索引, 查询记录数;
例子:
-- 查询第一页数据,展示10条
SELECT * FROM employee LIMIT 0, 10;
-- 查询第二页
SELECT * FROM employee LIMIT 10, 10;
FROM -> WHERE -> GROUP BY -> SELECT -> ORDER BY -> LIMIT
查询用户:
USER mysql;
SELECT * FROM user;
创建用户:
CREATE USER '用户名'@'主机名' IDENTIFIED BY '密码';
修改用户密码:
ALTER USER '用户名'@'主机名' IDENTIFIED WITH mysql_native_password BY '新密码';
删除用户:
DROP USER '用户名'@'主机名';
例子:
-- 创建用户test,只能在当前主机localhost访问
create user 'test'@'localhost' identified by '123456';
-- 创建用户test,能在任意主机访问
create user 'test'@'%' identified by '123456';
create user 'test' identified by '123456';
-- 修改密码
alter user 'test'@'localhost' identified with mysql_native_password by '1234';
-- 删除用户
drop user 'test'@'localhost';
常用权限:
权限 | 说明 |
---|---|
ALL, ALL PRIVILEGES | 所有权限 |
SELECT | 查询数据 |
INSERT | 插入数据 |
UPDATE | 修改数据 |
DELETE | 删除数据 |
ALTER | 修改表 |
DROP | 删除数据库/表/视图 |
CREATE | 创建数据库/表 |
更多权限请看权限一览表
查询权限:
SHOW GRANTS FOR '用户名'@'主机名';
授予权限:
GRANT 权限列表 ON 数据库名.表名 TO '用户名'@'主机名';
撤销权限:
REVOKE 权限列表 ON 数据库名.表名 FROM '用户名'@'主机名';
函数 是指一段可以直接被另外一段程序调用的程序或代码。
常用函数:
函数 | 功能 |
---|---|
CONCAT(s1, s2, …, sn) | 字符串拼接,将s1, s2, …, sn拼接成一个字符串 |
LOWER(str) | 将字符串全部转为小写 |
UPPER(str) | 将字符串全部转为大写 |
LPAD(str, n, pad) | 左填充,用字符串pad对str的左边进行填充,达到n个字符串长度 |
RPAD(str, n, pad) | 右填充,用字符串pad对str的右边进行填充,达到n个字符串长度 |
TRIM(str) | 去掉字符串头部和尾部的空格 |
SUBSTRING(str, start, len) | 返回从字符串str从start位置起的len个长度的字符串 |
使用示例:
-- 拼接
SELECT CONCAT('Hello', 'World');
-- 小写
SELECT LOWER('Hello');
-- 大写
SELECT UPPER('Hello');
-- 左填充
SELECT LPAD('01', 5, '-');
-- 右填充
SELECT RPAD('01', 5, '-');
-- 去除空格
SELECT TRIM(' Hello World ');
-- 切片(起始索引为1)
SELECT SUBSTRING('Hello World', 1, 5);
常见函数:
函数 | 功能 |
---|---|
CEIL(x) | 向上取整 |
FLOOR(x) | 向下取整 |
MOD(x, y) | 返回x/y的模 |
RAND() | 返回0~1内的随机数 |
ROUND(x, y) | 求参数x的四舍五入值,保留y位小数 |
常用函数:
函数 | 功能 |
---|---|
CURDATE() | 返回当前日期 |
CURTIME() | 返回当前时间 |
NOW() | 返回当前日期和时间 |
YEAR(date) | 获取指定date的年份 |
MONTH(date) | 获取指定date的月份 |
DAY(date) | 获取指定date的日期 |
DATE_ADD(date, INTERVAL expr type) | 返回一个日期/时间值加上一个时间间隔expr后的时间值 |
DATEDIFF(date1, date2) | 返回起始时间date1和结束时间date2之间的天数 |
例子:
-- DATE_ADD
SELECT DATE_ADD(NOW(), INTERVAL 70 YEAR);
常用函数:
函数 | 功能 |
---|---|
IF(value, t, f) | 如果value为true,则返回t,否则返回f |
IFNULL(value1, value2) | 如果value1不为空,返回value1,否则返回value2 |
CASE WHEN [ val1 ] THEN [ res1 ] … ELSE [ default ] END | 如果val1为true,返回res1,… 否则返回default默认值 |
CASE [ expr ] WHEN [ val1 ] THEN [ res1 ] … ELSE [ default ] END | 如果expr的值等于val1,返回res1,… 否则返回default默认值 |
例子:
select
name,
(case when age > 30 then '中年' else '青年' end)
from employee;
select
name,
(case workaddress when '北京市' then '一线城市' when '上海市' then '一线城市' else '二线城市' end) as '工作地址'
from employee;
分类:
约束 | 描述 | 关键字 |
---|---|---|
非空约束 | 限制该字段的数据不能为null | NOT NULL |
唯一约束 | 保证该字段的所有数据都是唯一、不重复的 | UNIQUE |
主键约束 | 主键是一行数据的唯一标识,要求非空且唯一 | PRIMARY KEY |
默认约束 | 保存数据时,如果未指定该字段的值,则采用默认值 | DEFAULT |
检查约束(8.0.1版本后) | 保证字段值满足某一个条件 | CHECK |
外键约束 | 用来让两张图的数据之间建立连接,保证数据的一致性和完整性 | FOREIGN KEY |
约束是作用于表中字段上的,可以再创建表/修改表的时候添加约束。
约束条件 | 关键字 |
---|---|
主键 | PRIMARY KEY |
自动增长 | AUTO_INCREMENT |
不为空 | NOT NULL |
唯一 | UNIQUE |
逻辑条件(MySQL8.0) | CHECK |
默认值 | DEFAULT |
例子:
create table user(
id int primary key auto_increment,
name varchar(10) not null unique,
age int check(age > 0 and age < 120),
status char(1) default '1',
gender char(1)
);
外键用来让两张表的数据之间建立连接,从而保证数据的一致性和完整性。
**注意:**目前上述的两张表,在数据库层面,并未建立外键关联,所以是无法保证数据的一致性和完整性的。
添加外键:
CREATE TABLE 表名(
字段名 字段类型,
...
[CONSTRAINT] [外键名称] FOREIGN KEY(外键字段名) REFERENCES 主表(主表列名)
);
ALTER TABLE 表名 ADD CONSTRAINT 外键名称 FOREIGN KEY (外键字段名) REFERENCES 主表(主表列名);
-- 例子
alter table emp add constraint fk_emp_dept_id foreign key(dept_id) references dept(id);
删除外键:
ALTER TABLE 表名 DROP FOREIGN KEY 外键名;
行为 | 说明 |
---|---|
NO ACTION | 当在父表中删除/更新对应记录时,首先检查该记录是否有对应外键,如果有则不允许删除/更新(与RESTRICT一致) |
RESTRICT | 当在父表中删除/更新对应记录时,首先检查该记录是否有对应外键,如果有则不允许删除/更新(与NO ACTION一致) |
CASCADE | 当在父表中删除/更新对应记录时,首先检查该记录是否有对应外键,如果有则也删除/更新外键在子表中的记录 |
SET NULL | 当在父表中删除/更新对应记录时,首先检查该记录是否有对应外键,如果有则设置子表中该外键值为null(要求该外键允许为null) |
SET DEFAULT | 父表有变更时,子表将外键设为一个默认值(Innodb不支持) |
更改删除/更新行为:
ALTER TABLE 表名 ADD CONSTRAINT 外键名称 FOREIGN KEY (外键字段) REFERENCES 主表名(主表字段名) ON UPDATE 行为 ON DELETE 行为;
案例:部门与员工
关系:一个部门对应多个员工,一个员工对应一个部门
实现:在多的一方建立外键,指向一的一方的主键
案例:学生与课程
关系:一个学生可以选多门课程,一门课程也可以供多个学生选修
实现:建立第三张中间表,中间表至少包含两个外键,分别关联两方主键
案例:用户与用户详情
关系:一对一关系,多用于单表拆分,将一张表的基础字段放在一张表中,其他详情字段放在另一张表中,以提升操作效率
实现:在任意一方加入外键,关联另外一方的主键,并且设置外键为唯一的(UNIQUE)
合并查询(笛卡尔积,会展示所有组合结果):
select * from employee, dept;
笛卡尔积:两个集合A集合和B集合的所有组合情况(在多表查询时,需要消除无效的笛卡尔积)
消除无效笛卡尔积:
select * from employee, dept where employee.dept = dept.id;
内连接查询的是两张表交集的部分
隐式内连接:
SELECT 字段列表 FROM 表1, 表2 WHERE 条件 ...;
显式内连接:
SELECT 字段列表 FROM 表1 [ INNER ] JOIN 表2 ON 连接条件 ...;
显式性能比隐式高
例子:
-- 查询员工姓名,及关联的部门的名称
-- 隐式
select e.name, d.name from employee as e, dept as d where e.dept = d.id;
-- 显式
select e.name, d.name from employee as e inner join dept as d on e.dept = d.id;
左外连接:
查询左表所有数据,以及两张表交集部分数据
SELECT 字段列表 FROM 表1 LEFT [ OUTER ] JOIN 表2 ON 条件 ...;
相当于查询表1的所有数据,包含表1和表2交集部分数据
右外连接:
查询右表所有数据,以及两张表交集部分数据
SELECT 字段列表 FROM 表1 RIGHT [ OUTER ] JOIN 表2 ON 条件 ...;
例子:
-- 左
select e.*, d.name from employee as e left outer join dept as d on e.dept = d.id;
select d.name, e.* from dept d left outer join emp e on e.dept = d.id; -- 这条语句与下面的语句效果一样
-- 右
select d.name, e.* from employee as e right outer join dept as d on e.dept = d.id;
左连接可以查询到没有dept的employee,右连接可以查询到没有employee的dept
当前表与自身的连接查询,自连接必须使用表别名
语法:
SELECT 字段列表 FROM 表A 别名A JOIN 表A 别名B ON 条件 ...;
自连接查询,可以是内连接查询,也可以是外连接查询
例子:
-- 查询员工及其所属领导的名字
select a.name, b.name from employee a, employee b where a.manager = b.id;
-- 没有领导的也查询出来
select a.name, b.name from employee a left join employee b on a.manager = b.id;
把多次查询的结果合并,形成一个新的查询集
语法:
SELECT 字段列表 FROM 表A ...
UNION [ALL]
SELECT 字段列表 FROM 表B ...
SQL语句中嵌套SELECT语句,称谓嵌套查询,又称子查询。
SELECT * FROM t1 WHERE column1 = ( SELECT column1 FROM t2);
子查询外部的语句可以是 INSERT / UPDATE / DELETE / SELECT 的任何一个
根据子查询结果可以分为:
根据子查询位置可分为:
子查询返回的结果是单个值(数字、字符串、日期等)。
常用操作符:- < > > >= < <=
例子:
-- 查询销售部所有员工
select id from dept where name = '销售部';
-- 根据销售部部门ID,查询员工信息
select * from employee where dept = 4;
-- 合并(子查询)
select * from employee where dept = (select id from dept where name = '销售部');
-- 查询xxx入职之后的员工信息
select * from employee where entrydate > (select entrydate from employee where name = 'xxx');
返回的结果是一列(可以是多行)。
常用操作符:
操作符 | 描述 |
---|---|
IN | 在指定的集合范围内,多选一 |
NOT IN | 不在指定的集合范围内 |
ANY | 子查询返回列表中,有任意一个满足即可 |
SOME | 与ANY等同,使用SOME的地方都可以使用ANY |
ALL | 子查询返回列表的所有值都必须满足 |
例子:
-- 查询销售部和市场部的所有员工信息
select * from employee where dept in (select id from dept where name = '销售部' or name = '市场部');
-- 查询比财务部所有人工资都高的员工信息
select * from employee where salary > all(select salary from employee where dept = (select id from dept where name = '财务部'));
-- 查询比研发部任意一人工资高的员工信息
select * from employee where salary > any (select salary from employee where dept = (select id from dept where name = '研发部'));
返回的结果是一行(可以是多列)。
常用操作符:=, <, >, IN, NOT IN
例子:
-- 查询与xxx的薪资及直属领导相同的员工信息
select * from employee where (salary, manager) = (12500, 1);
select * from employee where (salary, manager) = (select salary, manager from employee where name = 'xxx');
返回的结果是多行多列
常用操作符:IN
例子:
-- 查询与xxx1,xxx2的职位和薪资相同的员工
select * from employee where (job, salary) in (select job, salary from employee where name = 'xxx1' or name = 'xxx2');
-- 查询入职日期是2006-01-01之后的员工,及其部门信息
select e.*, d.* from (select * from employee where entrydate > '2006-01-01') as e left join dept as d on e.dept = d.id;
事务是一组操作的集合,事务会把所有操作作为一个整体一起向系统提交或撤销操作请求,即这些操作要么同时成功,要么同时失败。
基本操作:
-- 1. 查询张三账户余额 select * from account where name = '张三'; -- 2. 将张三账户余额-1000 update account set money = money - 1000 where name = '张三'; -- 此语句出错后张三钱减少但是李四钱没有增加 模拟sql语句错误 -- 3. 将李四账户余额+1000 update account set money = money + 1000 where name = '李四'; -- 查看事务提交方式 SELECT @@AUTOCOMMIT; -- 设置事务提交方式,1为自动提交,0为手动提交,该设置只对当前会话有效 SET @@AUTOCOMMIT = 0; -- 提交事务 COMMIT; -- 回滚事务 ROLLBACK; -- 设置手动提交后上面代码改为: select * from account where name = '张三'; update account set money = money - 1000 where name = '张三'; update account set money = money + 1000 where name = '李四'; commit;
操作方式二:
开启事务:
START TRANSACTION 或 BEGIN TRANSACTION;
提交事务:
COMMIT;
回滚事务:
ROLLBACK;
操作实例:
start transaction;
select * from account where name = '张三';
update account set money = money - 1000 where name = '张三';
update account set money = money + 1000 where name = '李四';
commit;
开启事务后,只有手动提交才会改变数据库中的数据。
数据库事务拥有以下四个特性,习惯上被称之为ACID特性:
原子性(atomicity):个事务是一个不可分割的工作单位,事务中包括的诸操作要么都做,要么都不做。
一致性(consistency):事务必须是使数据库从一个一致性状态变到另一个一致性状态,事务的中间状态不能被观察到的。
隔离性(isolation):一个事务的执行不能被其他事务干扰。即一个事务内部的操作及使用的数据对并发的其他事务是隔离的,并发执行的各个事务之间不能互相干扰。隔离性又分为四个级别:读未提交(read uncommitted)、读已提交(read committed,解决脏读)、可重复读(repeatable read,解决虚读)、串行化(serializable,解决幻读)。
持久性(durability):持久性也称永久性(permanence),指一个事务一旦提交,它对数据库中数据的改变就应该是永久性的。接下来的其他操作或故障不应该对其有任何影响。
任何事务机制在实现时,都应该考虑事务的ACID特性,包括:本地事务、分布式事务,即使不能都很好的满足,也要考虑支持到什么程度。
数据库系统必须具有隔离并发运行各个事务的能力,使它们不会相互影响,避免各种并发问题。一个事务与其他事务隔离的程度称为隔离级别。SQL标准中规定了多种事务隔离级别,不同隔离级别对应不同的干扰程度,隔离级别越高,数据一致性就越好,但并发性越弱。
既然事务可以并发操作,这里就有一些问题:一个事务在写数据的时候,另一个事务要读这行数据,该怎么处理?一个事务在写数据,另一个数据也要写这行数据,又该怎么处理这个冲突?
脏读
脏读指的是读到了其他事务未提交的数据,未提交意味着这些数据可能会回滚,也就是可能最终不会存到数据库中,也就是不存在的数据。读到了并一定最终存在的数据,这就是脏读。
脏读最大的问题就是可能会读到不存在的数据。比如在上图中,事务B的更新数据被事务A读取,但是事务B回滚了,更新数据全部还原,也就是说事务A刚刚读到的数据并没有存在于数据库中。
从宏观来看,就是事务A读出了一条不存在的数据,这个问题是很严重的。
不可重复读
不可重复读指的是在一个事务内,最开始读到的数据和事务结束前的任意时刻读到的同一批数据出现不一致的情况。
事务 A 多次读取同一数据,但事务 B 在事务A多次读取的过程中,对数据作了更新并提交,导致事务A多次读取同一数据时,结果 不一致。
幻读(虚读)
幻读错误的理解
说幻读是 事务A 执行两次 select 操作得到不同的数据集,即 select 1 得到 10 条记录,select 2 得到 15 条记录。这其实并不是幻读,既然第一次和第二次读取的不一致,那不还是不可重复读吗,所以这是不可重复读的一种。
正确的理解应该是
幻读,并不是说两次读取获取的结果集不同,幻读侧重的方面是某一次的 select 操作得到的结果所表征的数据状态无法支撑后续的业务操作。更为具体一些:select 某记录是否存在,不存在,准备插入此记录,但执行 insert 时发现此记录已存在,无法插入,此时就发生了幻读。
假设有张用户表,这张表的 id 是主键。表中一开始有4条数据。
看下出现 幻读 的场景
这里是在RR级别下研究(可重复读),因为 RU / RC 下还会存在脏读、不可重复读,故我们就以 RR 级别来研究 幻读,排除其他干扰。
1、事务A,查询是否存在 id=5 的记录,没有则插入,这是我们期望的正常业务逻辑。
2、这个时候 事务B 新增的一条 id=5 的记录,并提交事务。
3、事务A,再去查询 id=5 的时候,发现还是没有记录(因为这里是在RR级别下研究(可重复读),所以读到依然没有数据)
4、事务A,插入一条 id=5 的数据。
最终 事务A 提交事务,发现报错了。这就很奇怪,查的时候明明没有这条记录,但插入的时候 却告诉我 主键冲突,这就好像幻觉一样。这才是所有的幻读。
不可重复读侧重表达 读-读,幻读则是说 读-写,用写来证实读的是鬼影。
####事务的隔离级别
隔离级别一共有四种:
读未提交:READ UNCOMMITTED
允许Transaction01读取Transaction02未提交的修改。
读已提交:READ COMMITTED
要求Transaction01只能读取Transaction02已提交的修改。
可重复读:REPEATABLE READ
确保Transaction01可以多次从一个字段中读取到相同的值,即Transaction01执行期间禁止其它事务对这个字段进行更新。
串行化:SERIALIZABLE
确保Transaction01可以多次从一个表中读取到相同的行,在Transaction01执行期间,禁止其它事务对这个表进行添加、更新、删除操作。可以避免任何并发问题,但性能十分低下。
各个隔离级别解决并发问题的能力见下表:
隔离级别 | 脏读 | 不可重复读 | 幻读 |
---|---|---|---|
Read uncommitted | √ | √ | √ |
Read committed | × | √ | √ |
Repeatable Read(默认) | × | × | √ |
Serializable | × | × | × |
查看事务隔离级别:
SELECT @@TRANSACTION_ISOLATION;
设置事务隔离级别:
SET [ SESSION | GLOBAL ] TRANSACTION ISOLATION LEVEL {READ UNCOMMITTED | READ COMMITTED | REPEATABLE READ | SERIALIZABLE };
SESSION 是会话级别,表示只针对当前会话有效,GLOBAL 表示对所有会话有效
MySQL体系结构:
存储引擎就是存储数据、建立索引、更新/查询数据等技术的实现方式。存储引擎是基于表而不是基于库的,所以存储引擎也可以被称为表引擎。
默认存储引擎是InnoDB。
相关操作:
-- 查询建表语句
show create table account;
-- 建表时指定存储引擎
CREATE TABLE 表名(
...
) ENGINE=INNODB;
-- 查看当前数据库支持的存储引擎
show engines;
InnoDB 是一种兼顾高可靠性和高性能的通用存储引擎,在 MySQL 5.5 之后,InnoDB 是默认的 MySQL 引擎。
特点:
文件:
参数:innodb_file_per_table,决定多张表共享一个表空间还是每张表对应一个表空间
知识点:
查看 Mysql 变量:
show variables like 'innodb_file_per_table';
如果显示打开表示每张表对应一个表空间
从idb文件提取表结构数据:
(在cmd运行) ibd2sdi xxx.ibd
sdi表示表结构数据
InnoDB 逻辑存储结构:
MyISAM 是 MySQL 早期的默认存储引擎。
特点:
文件:
Memory 引擎的表数据是存储在内存中的,受硬件问题、断电问题的影响,只能将这些表作为临时表或缓存使用。
特点:
文件:
特点 | InnoDB | MyISAM | Memory |
---|---|---|---|
存储限制 | 64TB | 有 | 有 |
事务安全 | 支持 | - | - |
锁机制 | 行锁 | 表锁 | 表锁 |
B+tree索引 | 支持 | 支持 | 支持 |
Hash索引 | - | - | 支持 |
全文索引 | 支持(5.6版本之后) | 支持 | - |
空间使用 | 高 | 低 | N/A |
内存使用 | 高 | 低 | 中等 |
批量插入速度 | 低 | 高 | 高 |
支持外键 | 支持 | - | - |
在选择存储引擎时,应该根据应用系统的特点选择合适的存储引擎。对于复杂的应用系统,还可以根据实际情况选择多种存储引擎进行组合。
电商中的足迹和评论适合使用 MyISAM 引擎,缓存适合使用 Memory 引擎。
查看当前数据库的 INSERT, UPDATE, DELETE, SELECT 访问频次:
SHOW GLOBAL STATUS LIKE 'Com_______';
或者 SHOW SESSION STATUS LIKE 'Com_______';
例:show global status like 'Com_______'
慢查询日志记录了所有执行时间超过指定参数(long_query_time,单位:秒,默认10秒)的所有SQL语句的日志。
MySQL的慢查询日志默认没有开启,需要在MySQL的配置文件(/etc/my.cnf)中配置如下信息:
# 开启慢查询日志开关
slow_query_log=1
# 设置慢查询日志的时间为2秒,SQL语句执行时间超过2秒,就会视为慢查询,记录慢查询日志
long_query_time=2
更改后记得重启MySQL服务,日志文件位置:/var/lib/mysql/localhost-slow.log
查看慢查询日志开关状态:
show variables like 'slow_query_log';
show profile 能在做SQL优化时帮我们了解时间都耗费在哪里。通过 have_profiling 参数,能看到当前 MySQL 是否支持 profile 操作:
SELECT @@have_profiling;
profiling 默认关闭,可以通过set语句在session/global级别开启 profiling:
SET profiling = 1;
查看所有语句的耗时:
show profiles;
查看指定query_id的SQL语句各个阶段的耗时:
show profile for query query_id;
查看指定query_id的SQL语句CPU的使用情况
show profile cpu for query query_id;
EXPLAIN 或者 DESC 命令获取 MySQL 如何执行 SELECT 语句的信息,包括在 SELECT 语句执行过程中表如何连接和连接的顺序。
语法:
直接在select语句之前加上关键字 explain / desc
EXPLAIN SELECT 字段列表 FROM 表名 HWERE 条件;
EXPLAIN 各字段含义:
索引是帮助 MySQL 高效获取数据的数据结构(有序)。在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构上实现高级查询算法,这种数据结构就是索引。
优缺点:
优点:
缺点:
索引结构 | 描述 |
---|---|
B+Tree | 最常见的索引类型,大部分引擎都支持B+树索引 |
Hash | 底层数据结构是用哈希表实现,只有精确匹配索引列的查询才有效,不支持范围查询 |
R-Tree(空间索引) | 空间索引是 MyISAM 引擎的一个特殊索引类型,主要用于地理空间数据类型,通常使用较少 |
Full-Text(全文索引) | 是一种通过建立倒排索引,快速匹配文档的方式,类似于 Lucene, Solr, ES |
索引 | InnoDB | MyISAM | Memory |
---|---|---|---|
B+Tree索引 | 支持 | 支持 | 支持 |
Hash索引 | 不支持 | 不支持 | 支持 |
R-Tree索引 | 不支持 | 支持 | 不支持 |
Full-text | 5.6版本后支持 | 支持 | 不支持 |
二叉树形成链表的缺点可以用红黑树来解决:
红黑树也存在大数据量情况下,层级较深,检索速度慢的问题。
为了解决上述问题,可以使用 B-Tree 结构。
B-Tree (多路平衡查找树) 以一棵最大度数(max-degree,指一个节点的子节点个数)为5(5阶)的 b-tree 为例(每个节点最多存储4个key,5个指针)
B-Tree 的数据插入过程动画参照:https://www.bilibili.com/video/BV1Kr4y1i7ru?p=68
演示地址:https://www.cs.usfca.edu/~galles/visualization/BTree.html 当数据节点超过度数时,中间元素向上分裂
结构图:
演示地址:https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html
与 B-Tree 的区别:
MySQL 索引数据结构对经典的 B+Tree 进行了优化。在原 B+Tree 的基础上,增加一个指向相邻叶子节点的链表指针,就形成了带有顺序指针的 B+Tree,提高区间访问的性能。
哈希索引就是采用一定的hash算法,将键值换算成新的hash值,映射到对应的槽位上,然后存储在hash表中。
如果两个(或多个)键值,映射到一个相同的槽位上,他们就产生了hash冲突(也称为hash碰撞),可以通过链表来解决。
特点:
存储引擎支持:
分类 | 含义 | 特点 | 关键字 |
---|---|---|---|
主键索引 | 针对于表中主键创建的索引 | 默认自动创建,只能有一个 | PRIMARY |
唯一索引 | 避免同一个表中某数据列中的值重复 | 可以有多个 | UNIQUE |
常规索引 | 快速定位特定数据 | 可以有多个 | |
全文索引 | 全文索引查找的是文本中的关键词,而不是比较索引中的值 | 可以有多个 | FULLTEXT |
在 InnoDB 存储引擎中,根据索引的存储形式,又可以分为以下两种:
分类 | 含义 | 特点 |
---|---|---|
聚集索引(Clustered Index) | 将数据存储与索引放一块,索引结构的叶子节点保存了行数据 | 必须有,而且只有一个 |
二级索引(Secondary Index) | 又称辅助索引、非聚集索引。将数据与索引分开存储,索引结构的叶子节点关联的是对应的主键 | 可以存在多个 |
演示图:
聚集索引选取规则:
1. 以下 SQL 语句,哪个执行效率高?为什么?
select * from user where id = 10;
select * from user where name = 'Arm';
-- 备注:id为主键,name字段创建的有索引
答:第一条语句,因为第二条需要回表查询,相当于两个步骤。
2. InnoDB 主键索引的 B+Tree 高度为多少?
答:一页中可以存储16行这样的数据(1页占用空间为16k)。假设一行数据大小为1k,InnoDB 的指针占用6个字节的空间,主键假设为bigint,占用字节数为8. 可得公式:n * 8 + (n + 1) * 6 = 16 * 1024
,其中 8 表示 bigint 占用的字节数,n 表示当前节点存储的key的数量,(n + 1) 表示指针数量(比key多一个)。算出n约为1170。
如果树的高度为2,那么他能存储的数据量大概为:1171 * 16 = 18736
;
如果树的高度为3,那么他能存储的数据量大概为:1171 * 1171 * 16 = 21939856
。
另外,如果有成千上万的数据,那么就要考虑分表,涉及运维篇知识。
创建索引:
CREATE [ UNIQUE | FULLTEXT ] INDEX index_name ON table_name (index_col_name, ...);
如果不加 CREATE 后面不加索引类型参数,则创建的是常规索引
查看索引:
SHOW INDEX FROM table_name;
删除索引:
DROP INDEX index_name ON table_name;
案例:
-- name字段为姓名字段,该字段的值可能会重复,为该字段创建索引
create index idx_user_name on tb_user(name);
-- phone手机号字段的值非空,且唯一,为该字段创建唯一索引
create unique index idx_user_phone on tb_user (phone);
-- 为profession, age, status创建联合索引
create index idx_user_pro_age_stat on tb_user(profession, age, status);
-- 为email建立合适的索引来提升查询效率
create index idx_user_email on tb_user(email);
-- 删除索引
drop index idx_user_email on tb_user;
如果索引关联了多列(联合索引),要遵守最左前缀法则,最左前缀法则指的是查询从索引的最左列开始,并且不跳过索引中的列。
如果跳跃某一列,索引将部分失效(后面的字段索引失效)。跳过的话,后面的排序就无从说起了。最左前缀法则在用select的时候,和放的位置是没有关系的,只要存在就行。
联合索引中,出现范围查询(<, >),范围查询右侧的列索引失效。可以用>=或者<=来规避索引失效问题。
explain select * from tb_user where substring(phone, 10, 2) = '15';
换成 explain select * from tb_user where phone = '17799990015';
这是可以的。explain select * from tb_user where phone = 17799990015;
,此处phone的值没有加引号explain select * from tb_user where profession like '%工程';
,前后都有 % 也会失效。explain select * from tb_user where profession like '软件%';
这个是不会失效的,只有前面加了%才会失效。是优化数据库的一个重要手段,简单来说,就是在SQL语句中加入一些人为的提示来达到优化操作的目的。
例如,使用索引:
explain select * from tb_user use index(idx_user_pro) where profession="软件工程";
不使用哪个索引:
explain select * from tb_user ignore index(idx_user_pro) where profession="软件工程";
必须使用哪个索引:
explain select * from tb_user force index(idx_user_pro) where profession="软件工程";
use 是建议,实际使用哪个索引 MySQL 还会自己权衡运行速度去更改,force就是无论如何都强制使用该索引。
尽量使用覆盖索引(查询使用了索引,并且需要返回的列,在该索引中已经全部能找到),减少 select *。
explain 中 extra 字段含义:
using index condition
:查找使用了索引,但是需要回表查询数据
using where; using index;
:查找使用了索引,但是需要的数据都在索引列中能找到,所以不需要回表查询
示例:
场景1:
上图直接使用聚集索引,能直接查询到所有数据,不需要回表操作效率高,满足覆盖索引。
场景2:
上图使用辅助索引,获取条件为name及id,而辅助索引保存了数据的name、id。所有数据均获取得到,不需要回表操作,满足覆盖索引。
场景3:
上图使用辅助索引,获取条件为name、id、gender,而辅助索引保存的为数据的id。gender获取不到,需要回表操作,不满足覆盖索引。
覆盖索引:
如果在生成的二级索引(辅助索引)中可以一次性获得select所需要的字段,不需要回表查询。
如果在聚集索引中直接能找到对应的行,则直接返回行数据,只需要一次查询,哪怕是select *;
如果在辅助索引(二级索引)中找聚集索引,如select id, name from xxx where name='xxx';
,也只需要通过辅助索引(name)查找到对应的id,返回name和name索引对应的id即可,只需要一次查询;
如果是通过辅助索引查找其他字段,则需要回表查询,如select id, name, gender from xxx where name='xxx';
所以尽量不要用select *
,容易出现回表查询,降低效率,除非有联合索引包含了所有字段
面试题:一张表,有四个字段(id, username, password, status),由于数据量大,需要对以下SQL语句进行优化,该如何进行才是最优方案:
select id, username, password from tb_user where username='itcast';
解:给username和password字段建立联合索引,则不需要回表查询,直接覆盖索引。
username和password字段建立联合索引的叶子节点挂的就是 id 所以不需要三者同时建索引。
当字段类型为字符串(varchar, text等)时,有时候需要索引很长的字符串,这会让索引变得很大,查询时,浪费大量的磁盘IO,影响查询效率,此时可以只将字符串的一部分前缀,建立索引,这样可以大大节约索引空间,从而提高索引效率。
语法:create index idx_xxxx on table_name(columnn(n));
前缀长度:可以根据索引的选择性来决定,而选择性是指不重复的索引值(基数)和数据表的记录总数的比值,索引选择性越高则查询效率越高,唯一索引的选择性是1,这是最好的索引选择性,性能也是最好的。
求选择性公式:
--email去重后与总数的比例--
select count(distinct email) / count(*) from tb_user;
select count(distinct substring(email, 1, 5)) / count(*) from tb_user;
前缀索引中是有可能碰到相同的索引的情况的(因为选择性可能不为1),所以使用前缀索引进行查询的时候,mysql 会有一个回表查询的过程,确定是否为所需数据。如图中的查询到lvbu6之后还 要进行回表,回表完再查xiaoy
,看到xiaoy
是不需要的数据,则停止查下一个。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-NrEefcZq-1691052106006)(pic\mysql/pre.png “索引流程”)]
show index 里面的sub_part可以看到接取的长度
单列索引:即一个索引只包含单个列
联合索引:即一个索引包含了多个列
在业务场景中,如果存在多个查询条件,考虑针对于查询字段建立索引时,建议建立联合索引,而非单列索引。
单列索引情况:
explain select id, phone, name from tb_user where phone = '17799990010' and name = '韩信';
phone 和 name 都建立了索引情况下,这句只会用到phone索引字段。
联合索引的数据组织图:
普通插入:
大批量插入:
如果一次性需要插入大批量数据,使用insert语句插入性能较低,此时可以使用MySQL数据库提供的load指令插入。
# 客户端连接服务端时,加上参数 --local-infile(这一行在bash/cmd界面输入)
mysql --local-infile -u root -p
# 设置全局参数local_infile为1,开启从本地加载文件导入数据的开关
set global local_infile = 1;
select @@local_infile;
# 执行load指令将准备好的数据,加载到表结构中,先要把表建立起来。
load data local infile '/root/sql1.log' into table 'tb_user' fields terminated by ',' lines terminated by '\n';
数据组织方式:在InnoDB存储引擎中,表数据都是根据主键顺序组织存放的,这种存储方式的表称为索引组织表(Index organized table, IOT)
####页分裂
主键的顺序的插入过程如下:
主键的乱序的插入过程如下:
插入50时,由于介于2页之间,且第一页不够存储50。会重新开辟一页(如下)。
开辟新页后,将上一页中间后面的数据移动到新页,并插入50这行数据。
插入后,页与页重新关联。
但是如果主键是乱序插入的话,就会导致需要插入的位置为中间的位置,会有页分裂的过程。
页分裂:页可以为空,也可以填充一般,也可以填充100%,每个页包含了2-N行数据(如果一行数据过大,会行溢出),根据主键排列。
####页合并
页合并:当删除一行记录时,实际上记录并没有被物理删除,只是记录被标记(flaged)为删除并且它的空间变得允许被其他记录声明使用。
当删除一行记录时,实际上记录并没有被物理删除,只是记录被标记(flaged)为删除并且它的空间变得允许被其他记录声明使用。
当页中删除的记录到达 MERGE_THRESHOLD(默认为页的50%),InnoDB会开始寻找最靠近的页(前后)看看是否可以将这两个页合并以优化空间使用。
MERGE_THRESHOLD:合并页的阈值,可以自己设置,在创建表或创建索引时指定
文字说明不够清晰明了,具体可以看视频里的PPT演示过程:https://www.bilibili.com/video/BV1Kr4y1i7ru?p=90
主键设计原则:
数据结构如下:会先对age进行升序,在对phone进行降序。
如果一个字段升序排序,另一个字段降序排序,则不会走索引,explain的extra信息显示的是Using index, Using filesort
如果要优化掉Using filesort,则需要另外再创建一个索引,如:create index idx_user_age_phone_ad on tb_user(age asc, phone desc);
,此时使用select id, age, phone from tb_user order by age asc, phone desc;
会全部走索引
数据结构如下:
总结:
根据排序字段建立合适的索引,多字段排序时,也遵循最左前缀法则
尽量使用覆盖索引
多字段排序,一个升序一个降序,此时需要注意联合索引在创建时的规则(ASC/DESC)
如果不可避免出现filesort,大数据量排序时,可以适当增大排序缓冲区大小 sort_buffer_size(默认256k)
如索引为idx_user_pro_age_stat
,则句式可以是select ... where profession order by age
,这样也符合最左前缀法则
常见的问题如limit 2000000, 10
,此时需要 MySQL 排序前2000000条记录,但仅仅返回2000000 - 2000010的记录,其他记录丢弃,查询排序的代价非常大。
优化方案:一般分页查询时,通过创建覆盖索引能够比较好地提高性能,可以通过覆盖索引加子查询形式进行优化
例如:
-- 此语句耗时很长
select * from tb_sku limit 9000000, 10;
-- 通过覆盖索引加快速度,直接通过主键索引进行排序及查询
select id from tb_sku order by id limit 9000000, 10;
-- 下面的语句是错误的,因为 MySQL 不支持 in 里面使用 limit
-- select * from tb_sku where id in (select id from tb_sku order by id limit 9000000, 10);
-- 通过连表查询即可实现第一句的效果,并且能达到第二句的速度
select * from tb_sku as s, (select id from tb_sku order by id limit 9000000, 10) as a where s.id = a.id;
MyISAM 引擎把一个表的总行数存在了磁盘上,因此执行 count(*) 的时候会直接返回这个数,效率很高(前提是不适用where);
InnoDB 在执行 count(*) 时,需要把数据一行一行地从引擎里面读出来,然后累计计数。
优化方案:自己计数,如创建key-value表存储在内存或硬盘,或者是用redis
count的几种用法:
各种用法的性能:
按效率排序:count(字段) < count(主键) < count(1) < count(*),所以尽量使用 count(*)
InnoDB 的行锁是针对索引加的锁,不是针对记录加的锁,并且该索引不能失效,否则会从行锁升级为表锁。
如以下两条语句:
update student set no = '123' where id = 1;
,这句由于id有主键索引,所以只会锁这一行;
update student set no = '123' where name = 'test';
,这句由于name没有索引,所以会把整张表都锁住进行数据更新,解决方法是给name字段添加索引,就可以由表锁变成行锁。
视图(View)是一种虚拟存在的表。视图中的数据并不在数据库中实际存在,行和列数据来自定义视图的查询中使用的表,并且是在使用视图时动态生成的。
通俗的讲,视图只保存了查询的SQL逻辑,不保存查询结果。所以我们在创建视图的时候,主要的工作就落在创建这条SQL查询语句上。
CREATE [ OR REPLACE ] VIEW 视图名称[(列名列表)] AS SELECT 语句 [ WITH [ CASCADED | LOCAL ] CHECK OPTION ]
例子:
create or replace view stu_wll as select id,name from student where id<=10;
查看创建视图语句: SHOW CREATE VIEW
视图名称;
查看视图数据:SELECT*FROM
视图名称;
show create view stu_v_1;
方式一:CREATE[OR REPLACE] VIEW 视图名称[(列名列表))] AS SELECT 语句[ WITH[ CASCADED | LOCAL ] CHECK OPTION ]
方式二:ALTER VIEW 视图名称 [(列名列表)] AS SELECT语句 [WITH [CASCADED | LOCAL] CHECK OPTION]
DROP VIEW [IF EXISTS] 视图名称 [视图名称]
当使用WITH CHECK QPTION子句创建视图时,MySQL会通过视图检查正在更改的每个行,例如插入,更新,删除,以使其符合视图的定义。MySQL允许基于另一个视图创建视图,它还会检查依赖视图中的规则以保持一致性。为了确定检查的范围,mysql提供了两个选项:CASCADED 和 LOCAL ,默认值为 CASCADED。
NOTE:如果没有开检查选项就不会进行检查。不同版本是不同含义的,要看版本。
级联,一旦选择了这个选项,除了会检查创建视图时候的条件,还会检查所依赖视图的条件。
比如下面的例子:创建stu_V_l 视图,id是小于等于 20的。
create or replace view stu_V_l as select id,name from student where id <=20;
再创建 stu_v_2 视图,20 >= id >=10。
create or replace view stu_v_2 as select id,name from stu_v_1 where id >=10 with cascaded check option;
再创建 stu_v_3 视图。
create or replace view stu_v_3 as select id,name from stu_v_2 where id<=15;
这条数据能够成功,stu_v_3 没有开检查选项所以不会 去判断 id 是否小于等于15, 直接检查 是否满足 stu_v_2。
insert into stu_v_3 values(17,'Tom');
本地的条件也会检查,还会向上检查。在向上找的时候,就要看是否上面开了检查选项,如果没开就不检查。和 CASCADED 的区别就是 CASCADED 不管上面开没开检查选项都会进行检查。
要使视图可更新,视图中的行与基础表中的行之间必须存在一对一的关系。如果视图包含以下任何一项,则该视图不可更新
例子: 使用了聚合函数,插入会失败。
create view stu_v_count as select count(*) from student;
insert into stu_v_count values(10);
作用
操作简单 视图不仅可以简化用户对数据的理解,也可以简化他们的操作。那些被经常使用的查询可以被定义为视图,从而使得用户不必为以后的操作每次指定全部的条件。
安全 数据库可以授权,但不能授权到数据库特定行和特定的列上。通过视图用户只能查询和修改他们所能见到的数据
数据独立 视图可帮助用户屏蔽真实表结构变化(比如基础表字段名称变化,只要适配视图的映射关系即可
create or replace view stu_V_l as select id,username as name from student where id <=20;
,视图字段可不变)带来的影响。
总而言之 类似于给表加上了一个外壳,通过这个外壳访问表的时候,只能按照所设计的方式进行访问与更新。
特点
CREATE PROCEDURE 存储过程名称( [参数列表] )
BEGIN
SQL 语句
END;
NOTE: 在命令行中,执行创建存储过程的SQL时,需要通过关键字delimiter 指定SQL语句的结束符。默认是 分号作为结束符。
delimiter $ ,则 $ 符作为结束符。
CALL 名称 ( [参数])
查询指定数据库的存储过程及状态信息
SELECT* FROM INFORMATION_SCHEMA.ROUTINES WHERE ROUTINE_SCHEMA = 'xxx'
存储过程名称;–查询某个存储过程的定义
SHOW CREATE PROCEDURE [存储过程名称]
DROP PROCEDURE [ IFEXISTS ] 存储过程名称
系统变量 是MySQL服务器提供,不是用户定义的,属于服务器层面。分为全局变量(GLOBAL)、会话变量(SESSION)
查看系统变量
SHOW [SESSION|GLOBAL] VARIABLES ;
– 查看所有系统变量
show session variables ;
SHOW [SESSION|GLOBAL] VARIABLES LIKE '...';
– 可以通过LIKE模糊匹配方式查找变量
show session variables like 'auto%';
SELECT @@[SESSION]GLOBAL] 系统变量名;
– 查看指定变量的值
select @@global.autocommit;
设置系统变量
SET[SESSION|GLOBAL] 系统变量名=值
set session autocommit = 1;
SET @@[SESSION| GLOBAL]系统变量名=值
NOTE:
如果没有指定SESSION/GLOBAL,默认是SESSION,会话变量。
mysql服务重新启动之后,所设置的全局参数会失效,要想不失效,可以在 /etc/my.cnf 中配置。
用户定义变量 是用户根据需要自己定义的变量,用户变量不用提前声明,在用的时候直接用“@变量名”使用就可以。其作用域为当前连接。(全局变量为@@开头,自定义为@开头)
赋值
SET @var name = expr [ @var name = expr] ... ;
SET @var name := expr [, @var name := expr] ... ;
set @myname = 'itcast!';
set @myage := 10;
set @mygender := '男' ,@myhobby := 'java';
SELECT @var_name : expr [ @var_name := expr] ... ;
select @mycolor := 'red'
SELECT 字段名 INTO @var name FROM 表名
select count(*) into @mycount from tb_user;
使用
SELECT @var_name ;
select @myname , @myage, @mygender, @myhobby:
NOTE: 用户定义的变量无需对其进行声明或初始化,只不过获取到的值为NULL.
局部变量 是根据需要定义的在局部生效的变量,访问之前,需要DECLARE声明。可用作存储过程内的局部变量和输入参数,局部变量的范围是在其内声明的BEGIN… END块。
DECLARE 变量名 变量类型[DEFAULT ...];
SET 变量名=值;
SET 变量名 := 值;
SELECT 字段名 INTO 变量名 FROM 表名
create procedurp20()
begin
declare stu_count int default 0;
select count(*) into stu_count from student;
select stu_count;
end;
类型 | 含义 | 备注 |
---|---|---|
IN | 该类参数作为输入,也就是需要调用时传入值 | 默认 |
OUT | 该类参数作为输出,也就是该参数可以作为返回值 | |
INOUT | 既可以作为输入参数,也可以作为输出参数 |
用法:
CREATE PROCEDURE 存储过程名称([IN/OUT/INOUT 参数名 参数类型] BEGIN -- SQL语句 END ;
create procedure p4(in score int, out result varchar(10))
begin
if score >= 85 then
set result :=优秀';
else if score >= 6 then
set result :=及格 :
else
set result :=不及格';
end if;
end;
call p4(68,@result);
语法
IF 条件1 THEN ..... ELSE IF 条件2 THEN -- 可选 ..... ELSE --可选 ..... END IF;
语法1
CASE case_value WHEN when_value1 THEN statement_list1 [ WHEN when_value2 THEN statement_list2] [ ELSE statement_list ] END CASE;
语法2
CASE WHEN search condition1 THEN statement_list1 [WHEN search condition2 THEN statement_list2] . [ELSE statement_list] END CASE
create procedure p6(in month int) begin declare result varchar(10): case when month >= 1 and month <= 3 then set result :='第一季度'; when month >= 4 and month <= 6 then set result :='第二季度'; when month >= 7 and month <= 9 then set result :='第三季度'; when month >= 10 and month <= 12 then set result :='第四季度'; else set result :='非法参数' end case select concat('您输入的月份为:',month,'所属的季度为:',result); end;
while 循环是有条件的循环控制语句。满足条件后,再执行循环体中的SQL语句。具体语法为:
#先判定条件,如果条件为true,则执行逻辑,否则,不执行逻辑
WHILE 条件 DO SQL逻辑... END WHILE;
-- while计算从1累加到h的值,n为传入的参数值
-- A. 定义局部交量, 记决累加之后的值;
-- B. 每衡环一次,就会n进行减1 , 如n减到0, 则退出衡环
create procedure p7(in n int)
begin
declare total int default 0;
while n>0 do
set total := total + n;
set n := n - 1;
end while;
select total;
end;
call p7(100);
repeat是有条件的循环控制语句,当满足条件的时候退出循环。所以在判断之前,会先运行一次。具体语法为:
#先执行一次逻辑,然后判定逻辑是否满足,如果满足,则退出。如果不满足,则继续下一次循环
REPEAT SQL逻辑 UNTIL 条件 END REPEAT;
-- while计算从1累加到h的值,n为传入的参数值
-- A. 定义局部交量, 记决累加之后的值;
-- B. 每衡环一次,就会n进行减1 , 如n减到0, 则退出衡环
create procedure p8(in n int)
begin
declare total int default 0;
repeat
set total := total + n;
set n := n - 1;
until n <= 0
end repeat;
select total;
end;
call p8(100);
LOOP 实现简单的循环,如果不在SQL逻辑中增加退出循环的条件,可以用其来实现简单的死循环。LOOP可以配合一下两个语句使用:
[begin label:] LoOP SQL逻辑 END LooP [end label]
LEAVE label;
– 退出指定标记的循环体
ITERATE label;
– 直接进入下一次循环
-- while计算从1累加到h的值,n为传入的参数值 -- A. 定义局部交量, 记决累加之后的值; -- B. 每衡环一次,就会n进行减1 , 如n减到0, 则退出衡环 create procedure p9(in n int) begin declare total int default 0; sum:loop if n<=0 then leave sum; end if; set total := total + n; set n := n - 1; end loop sum; select total; end; call p9(100);
游标(CURSOR)是用来存储查询结果集的数据类型,在存储过程和函数中可以使用游标对结果集进行循环的处理。游标的使用包括游标的声明、OPEN、FETCH和CLOSE,其语法分别如下。
声明游标:
DECLARE 游标名称 CURSOR FOR 查询语句
打开游标:
OPEN 游标名称
获取游标记录:
FETCH 游标名称INTO变量[变量]
handler条件处理程序
条件处理程序(Handler)可以用来定义在流程控制结构执行过程中遇到问题时相应的处理步骤。具体语法为:
DECLARE handler action HANDLER FOR condition value [,condition value]…statement
handler_action CONTINUE:继续执行当前程序
EXIT:终止执行当前程序
condition_value :
SQLSTATE sqlstate_value:状态码,如02000
SQLWARNING:所有以01开头的SQLSTATE代码的简写
NOT FOUND:所有以02开头的SQLSTATE代码的简写
SQLEXCEPTION:所有没有被SQLWARNING或NOT FOUND捕获的SQLSTATE代码的简写
详情:https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html
例子:
NOTE:要先声明普通变量,再申请游标。
要求:
根据传入的参数uage,来查询用户表tb_user中,所有的用户年龄小于等于uage的用户姓名(name)和专业(profession),并将用户的姓名和专业插入到所创建的一张新表(id,name,profession)中。
-- 游标 -- 根据传入的参数uage,来查询用户表 tb_user中,所有的用户年龄小于等于uage的用户姓名(name) 和专业(profession) -- 并将用户的姓名和专业插入到所创建的一张新表(id,name,profession)中。 -- 逻辑: -- A. 声明游标, 存储查询结果集 -- B. 准备: 创建表结构 -- C. 开启游标 -- D. 获取游标中的记灵 -- E. 插入数据到新表中 -- F. 关闭游标 create procedure p11(in uage int) begin -- 变量需要在游标之前声明 declare uname varchar(100); decLare upro varchar(100); declare u_cursor cursor for select name,profession from tb_user where age <= uage; -- 当 条件处理程序的处理的状态码为02000的时候,就会退出。 -- declare exit handler for SQLSTATE '02000' close u_cursor; declare exit handler for not found close u_cursor; drop table if exists tb_user_pro; create table if not exists tb_user_pro( id int primary key auto_increment, name varchar(100), profession varchar(100) ); open u_cursor; while true do fetch u_cursor into uname,Upro; insert into tb_user_pro values(null,uname,Upro); end while; close u_cursor; end; call p12(49);
##存储函数
存储函数是有返回值的存储过程,存储函数的参数只能是IN类型的。具体语法如下:
CREATE FUNCTION 存储函数名称( 参数列表] RETURNS type [characteristic ...] BEGIN -- SQL语句 RETURN ...; END ;
characteristic说明:
create function fun1(n int)
returns int deterministic
begin
declare total int default 0;
while n>0 do
set total := total + n;
set n := n - 1;
end while;
return total;
end;
fun1(100);
Note: 由于存储过程基本可以替代存储函数的功能,存储函数日常使用较少。
介绍
触发器是与表有关的数据库对象,指在insert/update/delete之前或之后,触发并执行触发器中定义的SQL语句集合。触发器的这种特性可以协助应用在数据库端确保数据的完整性,日志记录,数据校验等操作。
使用别名OLD和NEW来引用触发器中发生变化的记录内容,这与其他的数据库是相似的。现在触发器还只支持行级触发(比如说 一条语句影响了 5 行 则会被触发 5 次),不支持语句级触发(比如说 一条语句影响了 5 行 则会被触发 1 次)。
触发器类型 | NEW 和 OLD |
---|---|
INSERT | NEW 表示将要或者已经新增的数据 |
UPDATE | OLD表示修改之前的数据,NEW表示将要或已经修改后的数据 |
DELETE | OLD表示将要或者已经删除的数据 |
语法:
CREATE TRIGGER trigger_name BEFORE/AFTER INSERT/UPDATE/DELETE ON tbl_name FOR EACH ROW -- 行级触发器 BEGIN trigger stmt ; END;
SHOW TRIGGERS
DROP TRIGGER [schema_name.trigger_name;
– 如果没有指定 schema name,默认为当前数据库通过触发器记录 tb user 表的数据变更日志,将变更日志插入到日志表user logs中,包含增加,修改,删除
-- 创建表 create table user logs( id int(11) not null auto increment, operation varchar(20) not null comment '操作类型, insert/update/delete', operate_time datetime not null comment '操作时间', operate_id int(11) not null comment '操作的ID', operate_params varchar(500) comment '操作参数', primary key(id) )engine=innodb default charset=utf8; -- 插入数触发器 create trigger tb_user_insert_trigger after insert on tb_user for each row begin insert into user_logs(id, operation, operate_time, operate_id, operate_params) VALUES (null,'insert',now(),new.id,concat('插入的数据内容为: id=',new.id,'name=',new.name,'phone=',new.phone)); end; -- 更新数触发器 create trigger tb_user_update_trigger after update on tb_user for each row begin insert into user_logs(id, operation, operate_time, operate_id, operate_params) VALUES (null,'update',now(),new.id,concat('更新前的数据内容为: id=',new.id,'name=',new.name,'phone=',new.phone, '更新后的数据内容为: id=',old.id,'name=',old.name,'phone=',old.phone)); end; -- 删除数触发器 create trigger tb_user_delete_trigger after delete on tb_user for each row begin insert into user_logs(id, operation, operate_time, operate_id, operate_params) VALUES (null,'delete',now(),old.id,concat('删除的数据内容为: id=',old.id,'name=',old.name,'phone=',old.phone)); end;
锁是计算机协调多个进程或线程并发访问某一资源的机制。在数据库中,除传统的计算资源(CPU、RAM、I/O)的争用以外,数据也是一种供许多用户共享的资源。如何保证数据并发访问的一致性、有效性是所有数据库必须解决的一个问题,锁冲突也是影响数据库并发访问性能的一个重要因素。从这个角度来说,锁对数据库而言显得尤其重要,也更加复杂。
NOTE : 针对事务才有加锁的意义。
分类:MySQL中的锁,按照锁的粒度分,分为以下三类:
###全局锁
全局锁就是对整个数据库实例加锁,加锁后整个实例就处于只读状态,后续的DML的写语句,DDL语句,已经更新操作的事务提交语句都将被阻塞。
其典型的使用场景是做全库的逻辑备份,对所有的表进行锁定,从而获取一致性视图,保证数据的完整性。
特点
数据库中加全局锁,是一个比较重的操作,存在以下问题:
在InnoDB引擎中,我们可以在备份时加上参数 --single-transaction 参数来完成不加锁的一致性数据备份(通过快照读取,不通过加全局锁)
mysqldump --single-transaction -uroot -p123456 itcast > itcast.sql
###表级锁
表级锁,每次操作锁住整张表。锁定粒度大,发生锁冲突的概率最高,并发度最低。应用在MyISAM、InnoDB、BDB等存储引擎中。
对于表级锁,主要分为以下三类:
对于表锁,分为两类:
所有的事物都只能读(当前加锁的客户端也只能读,不能写),不能写 。
对当前加锁的客户端,可读可写,对于其他的客户端,不可读也不可写。
语法:
加锁: lock tables 表名...read/write
。
释放锁: unlock tables
/客户端断开连接。
读锁不会阻塞其他客户端的读,但是会阻塞写。写锁既会阻塞其他客户端的读,又会阻塞其他客户端的写。
MDL加锁过程是系统自动控制,无需显式使用,在访问一张表的时候会自动加上。MDL锁主要作用是维护表元数据的数据一致性,在表上有活动事务的时候,不可以对元数据进行写入操作。为了避免DML与DDL冲突,保证读写的正确性。
在MySQL5.5中引入了MDL,当对一张表进行增删改查的时候,加MDL读锁(共享);当对表结构进行变更操作的时候,加MDL写锁(排他)。
对应SQL | 锁类型 | 说明 |
---|---|---|
lock tables xxx read / write | SHARED READ ONLY / SHARED NO READ WRITE | |
select 、select …lock in share mode | SHARED READ | 与SHARED READ、SHARED WRITE兼容,与EXCLUSIVE互斥 |
insert 、update、delete、 select … for update | SHARED WRITE | 与SHARED READ、SHARED WRITE兼容,与EXCLUSIVE互斥 |
alter table … | EXCLUSIVE | 与其他的MDL都互斥 |
查看元数据锁:
select obiect type,obiect schema,obiect name,lock type lock duration from performance schema.metadata locks;
为了避免DML在执行时,加的行锁与表锁的冲突,在InnoDB中引入了意向锁,使得表锁不用检查每行数据是否加锁,使用意向锁来减少表锁的检查。 一个客户端对某一行加上了行锁,那么系统也会对其加上一个意向锁,当别的客户端来想要对其加上表锁时,便会检查意向锁是否兼容,若是不兼容,便会阻塞直到意向锁释放。
加意向锁之前:
加意向锁之后:
意向锁兼容性:
由语句 select …lock in share mode添加。与表锁共享锁(read)兼容,与表锁排它锁(write)互斥。
由insert、update、delete、select …for update 添加。与表锁共享锁(read)及排它锁(write)都互斥。意向锁之间不会互斥。
可以通过以下SQL,查看意向锁及行锁的加锁情况:
select obiect_schema,object_name,index_name,lock_type,lock_mode,lock_data from performance_schema.data_locks:
###行级锁
行级锁,每次操作锁住对应的行数据。锁定粒度最小,发生锁冲突的概率最低,并发度最高。应用在InnoDB存储引擎中。
InnoDB的数据是基于索引组织的,行锁是通过对索引上的索引项加锁来实现的,而不是对记录加的锁。对于行级锁,主要分为以下三类:
间隙锁(GapLock):锁定索引记录间隙(不含该记录),确保索引记录间隙不变,防止其他事务在这个间隙进行insert,产生幻读。在RR隔离级别下都支持。比如说 两个临近叶子节点为 16 81,那么间隙就是指 [16 , 81],锁的是这个间隙。
临键锁(Next-Key Lock):行锁和间隙锁组合,同时锁住数据,并锁住数据前面的间隙Gap。在RR隔离级别下支持。
InnoDB实现了以下两种类型的行锁:
当前锁\请求锁 | 共享锁 | 排他锁 |
---|---|---|
共享锁 | 兼容 | 冲突 |
排他锁 | 冲突 | 冲突 |
SQL | 行锁类型 | 说明 |
---|---|---|
insert | 排他锁 | 自动加锁 |
update | 排他锁 | 自动加锁 |
delete | 排他锁 | 自动加锁 |
select | 不加任何锁 | |
select lock in share mode | 排他锁 | 需要手动在SELECT之后加LOCK IN SHARE MODE |
select for update | 排他锁 | 需要手动在SELECT之后加FOR UPDATE |
行锁 - 演示
默认情况下,InnoDB在REPEATABLE READ事务隔离级别运行,InnoDB使用next-key 锁进行搜索和索引扫描,以防止幻读。
间隙锁/临键锁-演示
默认情况下,InnoDB在REPEATABLE READ事务隔离级别运行,InnoDB使用next-key 锁进行搜索和索引扫描,以防止幻读。
索引上的等值查询(普通索引),向右遍历时最后一个值不满足查询需求时,临键锁 退化为间隙锁。
上图中,由于是普通索引,可能会存在多个一样的索引值(18),故需要向右遍历到最后一个值不满足查询需求(遍历到29)后,锁住16到18之间,18到29之间的间隙。
索引上的范围查询(唯一索引)–会访问到不满足条件的第一个值为止。
注意:间隙锁唯一目的是防止其他事务插入间隙。间隙锁可以共存,一个事务采用的间隙锁不会阻止另一个事务在同一间隙上采用间隙锁。
表空间(ibd文件),一个mysql实例可以对应多个表空间,用于存储记录、索引等数据。
段,分为数据段(Leaf node segment)、索引段(Non-leaf node segment)、回滚段(Rollback segment),InnoDB是索引组织表,数据段就是B+树的叶子节点,索引段即为B+树的非叶子节点。段用来管理多个Extent(区)。
区,表空间的单元结构,每个区的大小为1M。默认情况下,InnoDB存储引擎页大小为16K,即一个区中一共有64个连续的页。
页,是InnoDB存储引擎磁盘管理的最小单元,每个页的大小默认为16KB。为了保证页的连续性,InnoDB存储引擎每次从磁盘申请4-5个区。一页包含若干行。
行,InnoDB存储引擎数据是按进行存放的。
MysQL5.5 版本开始,默认使用innoDB存储引擎,它擅长事务处理,具有崩溃恢复特性,在日常开发中使用非常广泛。下面是lnnoDB架构图,左侧为内存结构,右侧为磁盘结构。
####内存架构
Buffer Pool:缓冲池是主内存中的一个区域,里面可以缓存磁盘上经常操作的真实数据,在执行增删改查操作时,先操作缓冲池中的数据(若缓冲池没有数据,则从磁盘加载并缓存),然后再以一定频率刷新到磁盘,从而减少磁盘I0,加快处理速度。
InnoDB的整个体系结构为:
当业务操作的时候直接操作的是内存缓冲区,如果缓冲区当中没有数据,则会从磁盘中加载到缓冲区,增删改查都是在缓冲区的,后台线程以一定的速率刷新到磁盘。
事务是一组操作的集合,它是一个不可分割的工作单位,事务会把所有的操作作为一个整体一起向系统提交或撤销操作请求,即这些操作要么同时成功,要么同时败。具有ACID四大特征。
原子性,一致性,持久性这三大特性由 redo log 和 undo log 日志来保证的。
隔离性 是由锁机制和MVCC保证的。
redo log:
重做日志,记录的是事务提交时数据页的物理修改,是用来实现事务的持久性。
该日志文件由两部分组成:重做日志缓冲(redo log buffer)以及重做日志文件(redo log file),前者是在内存中,后者在磁盘中。当事务提交之后会把所有修改信息都存到该日志文件中,用于在刷新脏页到磁盘,发生错误时,进行数据恢复使用。
个人理解: 事物每次提交的时候都会将数据刷到redo log中而不是直接将buffer pool中的数据直接刷到磁盘中(ibd文件中),是因为redo log 是顺序写,性能处理的够快,直接刷到ibd中,是随机写,性能慢。所以脏页是在下一次读的时候,或者后台线程采用一定的机制进行刷盘到ibd中。
undo log:
回滚日志,用于记录数据被修改前的信息,作用包含两个:提供回滚和MVCC(多版本并发控制)。
undo log和redo log记录物理日志不一样,它是逻辑日志。可以认为当delete一条记录,undo log中会记录一条对应的insert记录,反之亦然,当update一条记录时,它记录一条对应相反的update记录。当执行rollback时,就可以从undo log中的逻辑记录读取到相应的内容并进行回滚。
Undo log销毁:undo log在事务执行时产生,事务提交时,并不会立即删除undo log,因为这些日志可能还用于MVCC。
Undo log存储:undo log采用段的方式进行管理和记录,存放在前面介绍的rollback segment回滚段中,内部包含1024个undo log segment。
当前读
读取的是记录的最新版本,读取时还要保证其他并发事务不能修改当前记录,会对读取的记录进行加锁。对于我们日常的操作,如:
快照读
简单的select(不加锁)就是快照读,快照读,读取的是记录数据的可见版本,有可能是历史数据,不加锁,是非阻塞读。
MVCC
全称Multi-Version Concurrency Control,多版本并发控制。指维护一个数据的多个版本,使得读写操作没有冲突,快照读为MySQL实现MVCC提供了一个非阻塞读功能。MVCC的具体实现,还需要依赖于数据库记录中的三个隐式字段、undo log日志、readView。
###MVCC 实现原理
有三个隐藏的字段:
undo log回滚日志,在insert、update、delete的时候产生的便于数据回滚的日志。
当insert的时候,产生的undo log日志只在回滚时需要,在事务提交后,可被立即删除。
而update、delete的时候,产生的undo log日志不仅在回滚时需要,在快照读时也需要,不会立即被删除。
undo log 版本链:
undo log日志会记录原来的版本的数据,因为是通过undo log 日志进行回滚的。
如何确定返回哪一个版本 这是由read view决定返回 undo log 中的哪一个版本。
RC隔离级别下,在事务中每一次执行快照读时生成ReadView。
RR隔离级别下,在事务中第一次执行快照读时生成ReadView,后续会复用。
https://www.bilibili.com/video/BV1Kr4y1i7ru?p=145&spm_id_from=pageDriver&vd_source=bbc04b831b54029788a178a7c2e9ae20
MVCC 靠 隐藏字段 , undo log 版本链 , read view 实现的。
##MySQL管理
###系统数据库
Mysql数据库安装完成后,自带了一下四个数据库,具体作用如下:
该mysql不是指mysql服务,而是指mysql的客户端工具。
-e 选项可以在Mysql客户端执行SQL语句,而不用连接到MvSQL数据库再执行,对于一些批处理脚本,这种方式尤其方便。
mysql -uroot -p123456 db01 -e "select * from stu";
mysqladmin 是一个执行管理操作的客户端程序。可以用它来检查服务器的配置和当前状态、创建并删除数据库等。
mysaladmin -uroot -p123456 drop 'test01' ;
mysqladmin -uroot -p123456 version;
由于服务器生成的二进制日志文件以二进制格式保存,所以如果想要检查这些文本的文本格式,就会使用到mysqlbinlog 日志管理工具。
####mysqlshow
mysqlshow 客户端对象查找工具,用来很快地查找存在哪些数据库、数据库中的表、表中的列或者索引。
mysqldump 客户端工具用来备份数据库或在不同数据库之间进行数据迁移。备份内容包含创建表,及插入表的SQL语句。
####mysqlimport/source
mysqlimport是客户端数据导入工具,用来导入mysqldump 加-T 参数后导出的文本文件。
如果需要导入sql文件,可以使用mysql中的source 指令:
错误日志是 MySQL 中最重要的日志之一,它记录了当 mysqld 启动和停止时,以及服务器在运行过程中发生任何严重错误时的相关信息当数据库出现任何故障导致无法正常使用时,建议首先查看此日志。
该日志是默认开启的,默认存放目录 /var/log/,默认的日志文件名为 mysqld.log 。查看日志位置:
show variables like '%log error%'
二进制日志(BINLOG)记录了所有的 DDL(数据定义语言)语句和 DML数据操纵语言)语句,但不包括数据查询(SELECT、SHOW)
语句。
作用:
在MySQL8版本中,默认二进制日志是开启着的,涉及到的参数如下
show variables like '%log_bin%';
MySQL服务器中提供了多种格式来记录二进制日志,格式及特点如下:
show variables like '%binlog_format%';
日志查看
由于日志是以二进制方式存储的,不能直接读取,需要通过二进制日志查询工具mysqlbinlog 来查看,具体语法
示例:mysqlbinlog -v binlog.000002
修改日志输出格式
日志清除
对于比较繁忙的业务系统,每天生成的binlog数据巨大,如果长时间不清除,将会占用大量磁盘空间。可以通过以下几种方式清理日志
也可以在mysql的配置文件中配置二进制日志的过期时间,设置了之后,二进制日志过期会自动删除。
show variables like '%binlog_expire_logs_seconds%';
查询日志中记录了客户端的所有操作语句,而二进制日志不包含查询数据的SOL语句。默认情况下,查询日志是未开启的。如果需要开启查询日志,可以设置以下配置 :
慢查询日志记录了所有执行时间超过参数 long_query_time 设置值并且扫描记录数不小于 min_examined_row_limit的所有的SQL语句的日志,默认未开启。long_query time 默认为 10 秒,最小为0,精度可以到微秒。
默认情况下,不会记录管理语句,也不会记录不使用索引进行查找的查询。可以使用log_slow_admin_statements和更改此行为 log_queries_not_using_indexes,如下所述。
###概述
主从复制是指将主数据库的DDL和 DML 操作通过二进制日志传到从库服务器中,然后在从库上对这些日志重新执行(也叫重做),从而使得从库和主库的数据保持同步。
MySOL支持一台主库同时向多台从库进行复制,从库同时也可以作为其他从服务器的主库,实现链状复制。
优点:
MySQL的主从复制原理如下:
从上图来看,复制分成三步:
Master 主库在事务提交时,会把数据变更记录在二进制日志文件 Binlog 中。
从库读取主库的二进制日志文件 Binlog,写入到从库的中继日志 Relay Log。
slave重做中继日志中的事件,将改变反映它自己的数据。
准备好两台服务器之后,在上述的两台服务器中分别安装好MySQL,并完成基础的初始化准备工作。
####主库配置
重启MySQL服务器
登录mysql,创建远程连接的账号,并授予主从复制权限
示例:
####从库配置
修改配置文件/etc/my.cnf
重启MySQL服务器
登录mysql,设置主库配置
开启同步操作
查看主从同步状态
随着互联网及移动互联网的发展,应用系统的数据量也是成指数式增长,若采用单数据库进行数据存储,存在以下性能瓶颈
分库分表的中心思想都是将数据分散存储,使得单一数据库/表的数据量变小来缓解单一数据库的性能问题,从而达到提升数据库性能的目的。
特点:
特点:
特点:
特点:
MyCat 前身是阿里的cobar。是开源的、活跃的、基于lava语言编写的MySQL数据库中间件。可以像使用mysql一样来使用mycat,对于开发人员来说根本感觉不到mycat的存在。
优势:
##读写分离
读写分离,简单地说是把对数据库的读和写操作分开,以对应不同的数据库服务器。主数据库提供写操作,从数据库提供读操作,这样能有效地减轻单台数据库的压力。
类型名称 | 取值范围 | 大小 |
---|---|---|
TINYINT | -128〜127 | 1个字节 |
SMALLINT | -32768〜32767 | 2个宇节 |
MEDIUMINT | -8388608〜8388607 | 3个字节 |
INT (INTEGHR) | -2147483648〜2147483647 | 4个字节 |
BIGINT | -9223372036854775808〜9223372036854775807 | 8个字节 |
无符号在数据类型后加 unsigned 关键字。
类型名称 | 说明 | 存储需求 |
---|---|---|
FLOAT | 单精度浮点数 | 4 个字节 |
DOUBLE | 双精度浮点数 | 8 个字节 |
DECIMAL (M, D),DEC | 压缩的“严格”定点数 | M+2 个字节 |
类型名称 | 日期格式 | 日期范围 | 存储需求 |
---|---|---|---|
YEAR | YYYY | 1901 ~ 2155 | 1 个字节 |
TIME | HH:MM:SS | -838:59:59 ~ 838:59:59 | 3 个字节 |
DATE | YYYY-MM-DD | 1000-01-01 ~ 9999-12-3 | 3 个字节 |
DATETIME | YYYY-MM-DD HH:MM:SS | 1000-01-01 00:00:00 ~ 9999-12-31 23:59:59 | 8 个字节 |
TIMESTAMP | YYYY-MM-DD HH:MM:SS | 1980-01-01 00:00:01 UTC ~ 2040-01-19 03:14:07 UTC | 4 个字节 |
类型名称 | 说明 | 存储需求 |
---|---|---|
CHAR(M) | 固定长度非二进制字符串 | M 字节,1<=M<=255 |
VARCHAR(M) | 变长非二进制字符串 | L+1字节,在此,L< = M和 1<=M<=255 |
TINYTEXT | 非常小的非二进制字符串 | L+1字节,在此,L<2^8 |
TEXT | 小的非二进制字符串 | L+2字节,在此,L<2^16 |
MEDIUMTEXT | 中等大小的非二进制字符串 | L+3字节,在此,L<2^24 |
LONGTEXT | 大的非二进制字符串 | L+4字节,在此,L<2^32 |
ENUM | 枚举类型,只能有一个枚举字符串值 | 1或2个字节,取决于枚举值的数目 (最大值为65535) |
SET | 一个设置,字符串对象可以有零个或 多个SET成员 | 1、2、3、4或8个字节,取决于集合 成员的数量(最多64个成员) |
类型名称 | 说明 | 存储需求 |
---|---|---|
BIT(M) | 位字段类型 | 大约 (M+7)/8 字节 |
BINARY(M) | 固定长度二进制字符串 | M 字节 |
VARBINARY (M) | 可变长度二进制字符串 | M+1 字节 |
TINYBLOB (M) | 非常小的BLOB | L+1 字节,在此,L<2^8 |
BLOB (M) | 小 BLOB | L+2 字节,在此,L<2^16 |
MEDIUMBLOB (M) | 中等大小的BLOB | L+3 字节,在此,L<2^24 |
LONGBLOB (M) | 非常大的BLOB | L+4 字节,在此,L<2^32 |
具体权限的作用详见官方文档
GRANT 和 REVOKE 允许的静态权限
Privilege | Grant Table Column | Context |
---|---|---|
ALL [PRIVILEGES] | Synonym for “all privileges” | Server administration |
ALTER | Alter_priv | Tables |
ALTER ROUTINE | Alter_routine_priv | Stored routines |
CREATE | Create_priv | Databases, tables, or indexes |
CREATE ROLE | Create_role_priv | Server administration |
CREATE ROUTINE | Create_routine_priv | Stored routines |
CREATE TABLESPACE | Create_tablespace_priv | Server administration |
CREATE TEMPORARY TABLES | Create_tmp_table_priv | Tables |
CREATE USER | Create_user_priv | Server administration |
CREATE VIEW | Create_view_priv | Views |
DELETE | Delete_priv | Tables |
DROP | Drop_priv | Databases, tables, or views |
DROP ROLE | Drop_role_priv | Server administration |
EVENT | Event_priv | Databases |
EXECUTE | Execute_priv | Stored routines |
FILE | File_priv | File access on server host |
GRANT OPTION | Grant_priv | Databases, tables, or stored routines |
INDEX | Index_priv | Tables |
INSERT | Insert_priv | Tables or columns |
LOCK TABLES | Lock_tables_priv | Databases |
PROCESS | Process_priv | Server administration |
PROXY | See proxies_priv table | Server administration |
REFERENCES | References_priv | Databases or tables |
RELOAD | Reload_priv | Server administration |
REPLICATION CLIENT | Repl_client_priv | Server administration |
REPLICATION SLAVE | Repl_slave_priv | Server administration |
SELECT | Select_priv | Tables or columns |
SHOW DATABASES | Show_db_priv | Server administration |
SHOW VIEW | Show_view_priv | Views |
SHUTDOWN | Shutdown_priv | Server administration |
SUPER | Super_priv | Server administration |
TRIGGER | Trigger_priv | Tables |
UPDATE | Update_priv | Tables or columns |
USAGE | Synonym for “no privileges” | Server administration |
GRANT 和 REVOKE 允许的动态权限
Privilege | Context |
---|---|
APPLICATION_PASSWORD_ADMIN | Dual password administration |
AUDIT_ABORT_EXEMPT | Allow queries blocked by audit log filter |
AUDIT_ADMIN | Audit log administration |
AUTHENTICATION_POLICY_ADMIN | Authentication administration |
BACKUP_ADMIN | Backup administration |
BINLOG_ADMIN | Backup and Replication administration |
BINLOG_ENCRYPTION_ADMIN | Backup and Replication administration |
CLONE_ADMIN | Clone administration |
CONNECTION_ADMIN | Server administration |
ENCRYPTION_KEY_ADMIN | Server administration |
FIREWALL_ADMIN | Firewall administration |
FIREWALL_EXEMPT | Firewall administration |
FIREWALL_USER | Firewall administration |
FLUSH_OPTIMIZER_COSTS | Server administration |
FLUSH_STATUS | Server administration |
FLUSH_TABLES | Server administration |
FLUSH_USER_RESOURCES | Server administration |
GROUP_REPLICATION_ADMIN | Replication administration |
GROUP_REPLICATION_STREAM | Replication administration |
INNODB_REDO_LOG_ARCHIVE | Redo log archiving administration |
NDB_STORED_USER | NDB Cluster |
PASSWORDLESS_USER_ADMIN | Authentication administration |
PERSIST_RO_VARIABLES_ADMIN | Server administration |
REPLICATION_APPLIER | PRIVILEGE_CHECKS_USER for a replication channel |
REPLICATION_SLAVE_ADMIN | Replication administration |
RESOURCE_GROUP_ADMIN | Resource group administration |
RESOURCE_GROUP_USER | Resource group administration |
ROLE_ADMIN | Server administration |
SESSION_VARIABLES_ADMIN | Server administration |
SET_USER_ID | Server administration |
SHOW_ROUTINE | Server administration |
SYSTEM_USER | Server administration |
SYSTEM_VARIABLES_ADMIN | Server administration |
TABLE_ENCRYPTION_ADMIN | Server administration |
VERSION_TOKEN_ADMIN | Server administration |
XA_RECOVER_ADMIN | Server administration |
\G
会将结果的表格形式转换成行文本形式SELECT table_schema "Database Name"
, SUM(data_length + index_length) / (1024 * 1024) "Database Size in MB"
FROM information_schema.TABLES
GROUP BY table_schema;
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。