当前位置:   article > 正文

NVIDIA英伟达:深度学习服务器搭建指南 | 交流会笔记

怎么在服务器上安装英伟达环境
主讲人:Ken(何琨)| NVIDIA开发者社区经理
张康 屈鑫 编辑整理
量子位 出品 | 公众号 QbitAI

7月21日,量子位联合NVIDIA英伟达举行了线下交流会,跟现场近百位开发者同学共同探讨了深度学习服务器搭建过程中可能出现的问题,交流了在开发中的实战经验。

640?wx_fmt=jpeg

本场活动主讲人为NVIDIA英伟达开发者社区经理Ken(何琨),拥有7 年 GPU 开发经验,5 年人工智能开发经验。在人工智能、计算机视觉、高性能计算领域曾经独立完成过多个项目,并且在机器人和无人机领域,有过丰富的研发经验。

曾针对图像识别,目标的检测与跟踪等方面完成多种解决方案,作为主要研发者参与GPU版气象模式GRAPES。

640?wx_fmt=jpeg

活动现场座无虚席,交流环节也反应热烈,线上聚集了千逾感兴趣的小伙伴观看现场直播。

应读者要求,量子位将现场内容整理成文,与大家分享。

深度学习服务器

深度学习发展已经历经很多年。现在的相关算法已经是二三十年前的理论,或者说相关数学算法和模型都没有太大变化。

为什么到最近几年,深度学习才真正火起来。因为在这个时间段,我们的计算能力达到了和深度学习理论对应的水平。

我们在用神经网络的时候,为什么中间那些隐藏层原来不能用,就是因为我们原来的计算能力、CPU达不到相对应的水平。

2007年NVIDIA提出了CUDA这样的方法和工具,为开发者进行高性能计算,或者一些更深的工作的时候,提供很多帮助。随着深度学习技术的发展,我们发现GPU也很适用于深度学习的工作。

今天概括讲三个比较重要的内容:第一是深度学习,也就是模型的训练;第二是在训练中的样本管理;第三是训练模型的部署。这是深度学习完整流程的三个重要部分。

有很多同学问我,NVIDIA的算法的一些工具,是开源的吗?NVIDIA很多是不开源的,但是不开源的东西不代表不可以用。下图所示的工具,都可以免费使用,包括一些专用的框架,支持几乎市面上常用的所有开源的深度学习框架。

640?wx_fmt=jpeg

对框架之下的底层内容又提供了计算服务,包括一些集成好的计算库。在很早的时候,用CUDA去做一些计算之前,需要学 CUDA C、CUDA Fortune、CUDA C++等等,最近几年还推出了CUDA python。

我们当初学CUDA的时候,觉得可能需要花半年的时间,才算真正学会了一个东西。而在现在这样技术发展非常快的时代,已经不需要把底层研究那么透,可以用工具来完成一些工作。

NVIDIA

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小舞很执着/article/detail/934169
推荐阅读
相关标签
  

闽ICP备14008679号