当前位置:   article > 正文

Pedestrian Detection_filtered channel features for pedestrian detection

filtered channel features for pedestrian detection

原文:http://blog.csdn.net/guojingjuan/article/details/52688985?locationNum=13&fps=1

1. Shanshan Zhang

源码:https://bitbucket.org/shanshanzhang/code_filteredchannelfeatures/src

 Shanshan Zhang, Rodrigo Benenson, Mohamed Omran, Jan Hosang, and Bernt Schiele. How far are we from solving pedestrian detection? (CVPR), 2016.
论文笔记:http://blog.csdn.net/jacobkong/article/details/55670981

 Shanshan Zhang, Rodrigo Benenson, and Bernt Schiele. Filtered channel features for pedestrian detection. (CVPR), 2015.
论文介绍:http://blog.csdn.net/cv_family_z/article/details/48246491

张姗姗介绍:https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/people/alumni-and-former-members/shanshan-zhang/

2. Liliang Zhang

Is Faster R-CNN Doing Well for Pedestrian Detection?(ECCV)2016
Matlab源码:https://github.com/zhangliliang/RPN_BF/tree/RPN-pedestrian
论文介绍:http://blog.csdn.net/ture_dream/article/details/53087299

3. Yonglong Tian

http://personal.ie.cuhk.edu.hk/~ty014/
 Yonglong Tian, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Pedestrian detection aided by deep learning semantic tasks. (CVPR), 2015.
 Yonglong Tian, Ping Luo, XiaogangWang, and Xiaoou Tang. Deep learning strong parts for pedestrian detection. (ICCV), 2015.

4.代码集合doppia code

源码:https://bitbucket.org/rodrigob/doppia
这是一个代码集合,包含如下:
1. Pedestrian detection at 100 frames per second, R. Benenson. CVPR, 2012. 实时的
2. Stixels estimation without depth map computation
3. Fast stixels estimation for fast pedestrian detection
4. Seeking the strongest rigid detector
5. Ten years of pedestrian detection, what have we learned?
6. Face detection without bells and whistles

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小蓝xlanll/article/detail/176231
推荐阅读
相关标签
  

闽ICP备14008679号