赞
踩
在深度学习中,推理(Inference)、训练(Training)和验证(Validation)是三个关键概念,它们分别表示了不同的阶段和任务:
训练(Training):
训练是深度学习模型的初始阶段,其中模型通过学习数据的过程来逐步优化自己的参数,以便能够捕获输入数据的特征并执行特定任务。在训练阶段,模型接收训练数据集(包括输入特征和相应的标签或目标值),并使用优化算法(如梯度下降)来调整模型参数,以最小化预测值与真实标签之间的差距(损失函数)。训练的目标是使模型能够从数据中学习到一般的模式,以便在以后的推理阶段中进行准确的预测。
推理(Inference):
推理是在训练之后的阶段,用于使用训练好的模型进行预测或分类的过程。在推理阶段,模型接收新的、未见过的数据样本,并根据其已学习到的特征和模式,生成预测结果。推理是将模型应用于实际应用场景的过程,如图像分类、语音识别、自然语言处理等任务。
验证(Validation):
验证是在训练阶段用于监控模型性能和避免过拟合的过程。在训练期间,通常会将训练数据集划分为两部分:训练集和验证集。模型使用训练集进行参数调整,然后使用验证集来评估模型在未见过的数据上的性能。这有助于检测模型是否过拟合训练数据,以及是否需要调整超参数或采取其他措施来提高模型的泛化能力。
总结起来:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。