赞
踩
思考:
1)如何管理集群资源?
2)如何给任务合理分配资源?
Yarn 是一个资源调度平台,负责为运算程序提供服务器运算资源,相当于一个分布式的操作系统平台。
而 MapReduce 等运算程序则相当于运行于操作系统之上的应用程序。
YARN 主要由 ResourceManager、NodeManager、ApplicationMaster 和 Container 等组件构成。
HDFS、YARN、MapReduce三者关系
作业提交过程之YARN:
作业提交过程之HDFS & MapReduce
作业提交全过程详解
(1)作业提交
第 1 步:Client 调用 job.waitForCompletion 方法,向整个集群提交 MapReduce 作业。
第 2 步:Client 向 RM 申请一个作业 id。
第 3 步:RM 给 Client 返回该 job 资源的提交路径和作业 id。
第 4 步:Client 提交 jar 包、切片信息和配置文件到指定的资源提交路径。
第 5 步:Client 提交完资源后,向 RM 申请运行 MrAppMaster。
(2)作业初始化
第 6 步:当 RM 收到 Client 的请求后,将该 job 添加到容量调度器中。
第 7 步:某一个空闲的 NM 领取到该 Job。第 8 步:该 NM 创建 Container,并产生 MRAppmaster。第 9 步:下载 Client 提交的资源到本地。
(3)任务分配
第 10 步:MrAppMaster 向 RM 申请运行多个 MapTask 任务资源。
第 11 步:RM 将运行 MapTask 任务分配给另外两个 NodeManager,另两个 NodeManager分别领取任务并创建容器。
(4)任务运行
第 12 步:MR 向两个接收到任务的 NodeManager 发送程序启动脚本,这两个NodeManager 分别启动 MapTask,MapTask 对数据分区排序。
第13步:MrAppMaster等待所有MapTask运行完毕后,向RM申请容器,运行ReduceTask。
第 14 步:ReduceTask 向 MapTask 获取相应分区的数据。
第 15 步:程序运行完毕后,MR 会向 RM 申请注销自己。
(5)进度和状态更新
YARN 中的任务将其进度和状态(包括 counter)返回给应用管理器, 客户端每秒(通过mapreduce.client.progressmonitor.pollinterval 设置)向应用管理器请求进度更新, 展示给用户。
(6)作业完成
除了向应用管理器请求作业进度外, 客户端每 5 秒都会通过调用 waitForCompletion()来检查作业是否完成。
时间间隔可以通过 mapreduce.client.completion.pollinterval 来设置。
作业完成之后, 应用管理器和 Container 会清理工作状态。作业的信息会被作业历史服务器存储以备之后用户核查。
目前,Hadoop 作业调度器主要有三种:FIFO、容量(Capacity Scheduler)和公平(FairScheduler)。
Apache Hadoop3.1.3 默认的资源调度器是 Capacity Scheduler。CDH 框架默认调度器是 Fair Scheduler。具体设置详见:yarn-default.xml 文件
FIFO 调度器(First In First Out):单队列,根据提交作业的先后顺序,先来先服务。
优点:简单易懂;
缺点:不支持多队列,生产环境很少使用
Capacity Scheduler 是 Yahoo 开发的多用户调度器。
1)队列资源分配
从root开始,使用深度优先算法,优先选择资源占用率最低的队列分配资源。
2)作业资源分配
默认按照提交作业的优先级和提交时间顺序分配资源。
3)容器资源分配
按照容器的优先级分配资源;如果优先级相同,按照数据本地性原则:
(1)任务和数据在同一节点
(2)任务和数据在同一机架
(3)任务和数据不在同一节点也不在同一机架
Fair Schedulere 是 Facebook 开发的多用户调度器。
1)与容量调度器相同点
(1)多队列:支持多队列多作业
(2)容量保证:管理员可为每个队列设置资源最低保证和资源使用上线
(3)灵活性:如果一个队列中的资源有剩余,可以暂时共享给那些需要资源的队列,而一旦该队列有新的应用程序提交,则其他队列借调的资源会归还给该队列。
(4)多租户:支持多用户共享集群和多应用程序同时运行;为了防止同一个用户的作业独占队列中的资源,该调度器会对同一用户提交的作业所占资源量进行限定。
2)与容量调度器不同点
(1)核心调度策略
容量调度器:优先选择资源利用率低的队列公平调度器:
优先选择对资源的缺额比例大的
(2)每个队列可以单独设置资源分配方式
容量调度器:FIFO、 DRF
公平调度器:FIFO、FAIR、DRF
公平调度器设计目标是:在时间尺度上,所有作业获得公平的资源。某一时刻一个作业应获资源和实际获取资源的差距叫“缺额”•
调度器会优先为缺额大的作业分配资源。
公平调度器队列资源分配方式:
1)FIFO策略
公平调度器每个队列资源分配策略如果选择FIFO的话,此时公平调度器相当于上面讲过的容量调度器。
2)Fair策略
Fair 策略(默认)是一种基于最大最小公平算法实现的资源多路复用方式,默认情况下,每个队列内部采用该方式分配资源。这意味着,如果一个队列中有两个应用程序同时运行,则每个应用程序可得到1/2的资源;如果三个应用程序同时运行,则每个应用程序可得到1/3的资源。
具体资源分配流程和容量调度器一致;(1)选择队列(2)选择作业(3)选择容器
以上三步,每一步都是按照公平策略分配资源
Yarn 状态的查询,除了可以在 hadoop103:8088 页面查看外,还可以通过命令操作。常见的命令操作如下所示:
(1)列出所有 Application
yarn application -list
(2)根据 Application 状态过滤:yarn application -list -appStates (所有状态:ALL、NEW、NEW_SAVING、SUBMITTED、ACCEPTED、RUNNING、FINISHED、FAILED、KILLED)
yarn application -list -appStates
(3)Kill 掉 Application:
yarn application -killapplication_1612577921195_0001
(1)查询 Application 日志:yarn logs -applicationId
yarn logs -applicationIdapplication_1612577921195_0001
(2)查询 Container 日志:yarn logs -applicationId -containerId
yarn logs -applicationIdapplication_1612577921195_0001 -containerIdcontainer_1612577921195_0001_01_000001
(1)列出所有 Application 尝试的列表:yarn applicationattempt -list
yarn applicationattempt -listapplication_1612577921195_0001
(2)打印 ApplicationAttemp 状态:yarn applicationattempt -status
yarn applicationattempt -statusappattempt_1612577921195_0001_000001
(1)列出所有 Container:yarn container -list
yarn container -listappattempt_1612577921195_0001_000001
(2)打印 Container 状态:yarn container -status
yarn container -statuscontainer_1612577921195_0001_01_000001
列出所有节点:yarn node -list -all
yarn node -list -all
加载队列配置:yarn rmadmin -refreshQueues
yarn rmadmin -refreshQueues
打印队列信息:yarn queue -status
yarn queue -status default
1)ResourceManager相关
2)NodeManager相关
3)Container相关
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。