当前位置:   article > 正文

GC垃圾回收机制

gc垃圾回收

一、 GC原理:

GC是垃圾收集的意思(Garbage Collection),Java提供的GC功能可以自动监测对象是否超过作用域从而达到自动回收内存的目的。

1、为什么进行垃圾回收

如果不进行垃圾回收,内存迟早都会被消耗空,因为我们在不断的分配内存空间而不进行回收。除非内存无限大,我们可以任性的分配而不回收,但是事实并非如此。所以,垃圾回收是必须的。

简而言之,GC是将java的无用的堆对象进行清理,释放内存,以免发生内存泄露。

二、JVM与回收算法:

在这里我们先讲一下JVM结构:
JVM的内存结构包括5大区域:方法区,堆区,虚拟机栈,本地方法栈,程序计数器。

方法区(Method Area):用于存储类结构信息的地方,包括常量池、静态变量、构造函数等。虽然JVM规范把方法区描述为堆的一个逻辑部分, 但它却有个别名non-heap(非堆),所以大家不要搞混淆了。方法区还包含一个运行时常量池。
java堆(Heap):存储java实例或者对象的地方。这块是GC的主要区域(后面解释)。从存储的内容我们可以很容易知道,方法区和堆是被所有java线程共享的。
java栈(Stack):java栈总是和线程关联在一起,每当创建一个线程时,JVM就会为这个线程创建一个对应的java栈。在这个java栈中又会包含多个栈帧,每运行一个方法就创建一个栈帧,用于存储局部变量表、操作栈、方法返回值等。每一个方法从调用直至执行完成的过程,就对应一个栈帧在java栈中入栈到出栈的过程。所以java栈是现成私有的。
程序计数器(PC Register):用于保存当前线程执行的内存地址。由于JVM程序是多线程执行的(线程轮流切换),所以为了保证线程切换回来后,还能恢复到原先状态,就需要一个独立的计数器,记录之前中断的地方,可见程序计数器也是线程私有的。
本地方法栈(Native Method Stack):和java栈的作用差不多,只不过是为JVM使用到的native方法服务的。

1、内存分配

我觉得了解垃圾回收之前,得先了解JVM是怎么分配内存的,然后识别哪些内存是垃圾需要回收,最后才是用什么方式回收。
Java虚拟机是先一次性分配一块较大的空间,然后每次new时都在该空间上进行分配和释放,减少了系统调用的次数,节省了一定的开销,这有点类似于内存池的概念;二是有了这块空间过后,如何进行分配和回收就跟GC机制有关了。

java内存一般分为静态内存和动态内存。很容易理解,编译时就能够确定的内存就是静态内存,即内存是固定的,系统一次性分配,比如int类型变量;动态内存分配就是在程序执行时才知道要分配的存储空间大小,比如java对象的内存空间。根据上面我们知道,java栈、程序计数器、本地方法栈都是线程私有的,线程生就生,线程灭就灭,栈中的栈帧随着方法的结束也会撤销,内存自然就跟着回收了。所以这几个区域的内存分配与回收是确定的,我们不需要管的。但是java堆和方法区则不一样,我们只有在程序运行期间才知道会创建哪些对象,所以这部分内存的分配和回收都是动态的。一般我们所说的垃圾回收也是针对的这一部分。

总之Stack的内存管理是顺序分配的,而且定长,不存在内存回收问题;而Heap 则是为java对象的实例随机分配内存,不定长度,所以存在内存分配和回收的问题;

2、回收算法

1、标记-清除(Mark-sweep)

标记和清除。标记所有需要回收的对象,然后统一回收。这是最基础的算法,后续的收集算法都是基于这个算法扩展的。

在这里插入图片描述

缺点:
1、效率问题:标记和清除这两个过程效率都不高
2、空间问题:标记清除后会产生大量不连续的内存碎片,空间碎片太多可能会导致以后在程序中需要分配较大对象时,无法找到足够大的连续内存而不得不提前触发另一次垃圾收集。

2、复制(Copying)

在这里插入图片描述
此算法把内存空间划为两个相等的区域,每次只使用其中一个区域。垃圾回收时,遍历当前使用区域,把正在使用中的对象复制到另外一个区域中。此算法每次只处理正在使用中的对象,因此复制成本比较小,同时复制过去以后还能进行相应的内存整理,不会出现“碎片”问题。当然,此算法的缺点也是很明显的,就是需要两倍内存空间复制算法是为了解决效率问题,它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。这样使得每次都是对整个半区进行内存回收,内存分配也不用再考虑内存碎片等复杂情况,只要移动堆顶指针,按顺序分配内存即可,实现简单,运行高效。只是这种算法的代价是将内存缩小为原来的一半

3、标记-整理(Mark-Compact)

分为三个阶段:
1、标记阶段:首先需要先标记出存活的对象。
2、整理阶段:将所有的存活对象压缩到内存的一端。
3、清除阶段:把存活边界外的内存空间都清除一遍。
在这里插入图片描述
此算法结合了“标记-清除”和“复制”两个算法的优点。也是分两阶段,第一阶段从根节点开始标记所有被引用对象,第二阶段遍历整个堆,把清除未标记对象并且把存活对象“压缩”到堆的其中一块,按顺序排放。此算法避免了“标记-清除”的碎片问题,同时也避免了“复制”算法的空间问题

4、分代收集算法:

分代的垃圾回收策略,是基于这样一个事实:不同的对象的生命周期是不一样的。因此,不同生命周期的对象可以采取不同的收集方式,以便提高回收效率,这是当前商业虚拟机常用的垃圾收集算法。
为什么要运用分代垃圾回收策略? 在java程序运行的过程中,会产生大量的对象,因每个对象所能承担的职责不同所具有的功能不同所以也有着不一样的生命周期,有的对象生命周期较长,比如Http请求中的Session对象,线程,Socket连接等;有的对象生命周期较短,比如String对象,由于其不变类的特性,有的在使用一次后即可回收。试想,在不进行对象存活时间区分的情况下,每次垃圾回收都是对整个堆空间进行回收,那么消耗的时间相对会很长,而且对于存活时间较长的对象进行的扫描工作等都是徒劳。因此就需要引入分治的思想,所谓分治的思想就是因地制宜,将对象进行代的划分,把不同生命周期的对象放在不同的代上使用不同的垃圾回收方式。
Java堆一般分为三大部分:新生代、老年代、永久代
在这里插入图片描述

1、新生代

主要是用来存放新生的对象,新生代通常存活时间较短。一般占据堆的 1/3 空间。由于频繁创建对象,所以新生代会频繁触发 MinorGC(也叫新生代GC) 进行垃圾回收。
MinorGC:采用复制算法。
新生代分为 Eden 区、ServivorFrom、ServivorTo 三个区。
Eden 区:Java 新对象的出生地(如果新创建的对象占用内存很大,则直接分配到老年代)。当 Eden 区内存不够的时候就会触发 MinorGC,对新生代区进行一次垃圾回收。
ServivorTo:保留了一次 MinorGC 过程中的幸存者。
ServivorFrom:上一次 GC 的幸存者,作为这一次 GC 的被扫描者。
当 JVM 无法为新建对象分配内存空间的时候 (Eden 满了),Minor GC 被触发。因此新生代空间占用率越高,Minor GC 越频繁。

可以看出触发新生代GC的条件是Eden 满了

2、老年代

老年代的对象比较稳定,对象存活的时间比较长。所以 MajorGC 不会频繁执行。在进行 MajorGC(也叫老年代GC) 前一般都先进行了一次 MinorGC(新生代GC),使得有新生代的对象晋身入老年代,导致空间不够用时才触发。当无法找到足够大的连续空间分配给新创建的较大对象时也会提前触发一次 MajorGC 进行垃圾回收腾出空间。

MajorGC: 采用标记—清除算法 ,有的地方等同于Full GC,有的地方单单指老年代的GC。

3、永久代

指内存的永久保存区域,主要存放 Class 和 Meta(元数据)的信息。

Class 在被加载的时候被放入永久区域。它和和存放实例的区域不同,GC 不会在主程序运行期对永久区域进行清理。所以这也导致了永久代的区域会随着加载的 Class 的增多而胀满,最终抛出 OOM 异常。

3、Java中是怎么判断一个对象是垃圾?

可达性分析算法

Java中定义了一些起始点,称为GC Root,当有对象引用它的时候,就把对象挂载在它下面,形成一个树状结构,当一个对象处于一个这样的树里时,就认为此对象是可达的,反之是不可达
在这里插入图片描述

1、GC Roots是什么?

垃圾回收时,JVM首先要找到所有的GC Roots,这个过程称作 「枚举根节点」 ,这个过程是需要暂停用户线程的,即触发STW。
然后再从GC Roots这些根节点向下搜寻,可达的对象就保留,不可达的对象就回收。
那么,到底什么是GC Roots呢?

GC Roots就是对象,而且是JVM确定当前绝对不能被回收的对象(如方法区中类静态属性引用的对象 )。
只有找到这种对象,后面的搜寻过程才有意义,不能被回收的对象所依赖的其他对象肯定也不能回收嘛。

当JVM触发GC时,首先会让所有的用户线程到达安全点SafePoint时阻塞,也就是STW,然后枚举根节点,即找到所有的GC Roots,然后就可以从这些GC Roots向下搜寻,可达的对象就保留,不可达的对象就回收。
GC Roots是一种特殊的对象,是Java程序在运行过程中所必须的对象,而且是根对象。

2、哪些对象可以作为GC Roots?

全局对象和执行上下文。
下面就一起来理解一下为什么这几类对象可以被作为GC Roots。

1、方法区静态属性引用的对象
全局对象的一种,Class对象本身很难被回收,回收的条件非常苛刻,只要Class对象不被回收,静态成员就不能被回收。

2、方法区常量池引用的对象
也属于全局对象,例如字符串常量池,常量本身初始化后不会再改变,因此作为GC Roots也是合理的。

3、方法栈中栈帧本地变量表引用的对象
属于执行上下文中的对象,线程在执行方法时,会将方法打包成一个栈帧入栈执行,方法里用到的局部变量会存放到栈帧的本地变量表中。只要方法还在运行,还没出栈,就意味这本地变量表的对象还会被访问,GC就不应该回收,所以这一类对象也可作为GC Roots。

4、JNI本地方法栈中引用的对象
和上一条本质相同,无非是一个是Java方法栈中的变量引用,一个是native方法(C、C++)方法栈中的变量引用。

5、被同步锁持有的对象
被synchronized锁住的对象也是绝对不能回收的,当前有线程持有对象锁呢,GC如果回收了对象,锁不就失效了嘛。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小蓝xlanll/article/detail/397776
推荐阅读
相关标签
  

闽ICP备14008679号