赞
踩
以下是一个使用 TensorFlow 实现带自注意力机制的卷积神经网络(Convolutional Neural Network, CNN)进行训练和预测的示例代码:
- import tensorflow as tf
-
- # 定义模型的超参数
- learning_rate = 0.001
- epochs = 10
- batch_size = 32
-
- # 构建带自注意力机制的卷积神经网络模型
- def self_attention_cnn(input_shape, num_classes):
- inputs = tf.keras.Input(shape=input_shape)
-
- # 卷积层
- x = tf.keras.layers.Conv1D(32, 3, activation='relu')(inputs)
- x = tf.keras.layers.MaxPooling1D(2)(x)
- x = tf.keras.layers.Conv1D(64, 3, activation='relu')(x)
- x = tf.keras.layers.MaxPooling1D(2)(x)
- x = tf.keras.layers.Conv1D(128, 3, activation='relu')(x)
- x = tf.keras.layers.MaxPooling1D(2)(x)
-
- # 自注意力机制
- attention_weights = tf.keras.layers.Dense(1, activation='softmax')(x)
- attention_weights = tf.keras.layers.Flatten()(attention_weights)
- attention_weights = tf.keras.layers.Softmax()(attention_weights)
- attention_weights = tf.keras.layers.Reshape((1, -1))(attention_weights)
- x = tf.keras.layers.Dot(axes=[2, 1])([attention_weights, x])
-
- # 全连接层
- x = tf.keras.layers.Dense(128, activation='relu')(x)
- x = tf.keras.layers.Dropout(0.5)(x)
- x = tf.keras.layers.Dense(num_classes, activation='softmax')(x)
-
- model = tf.keras.Model(inputs=inputs, outputs=x)
- return model
-
- # 加载数据集
- (x_train, y_train), (x_test, y_test) = tf.keras.datasets.your_dataset.load_data()
-
- # 预处理数据
- x_train = tf.keras.preprocessing.sequence.pad_sequences(x_train)
- x_test = tf.keras.preprocessing.sequence.pad_sequences(x_test)
-
- # 构建模型
- input_shape = x_train.shape[1:]
- num_classes = len(set(y_train))
- model = self_attention_cnn(input_shape, num_classes)
-
- # 编译模型
- model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate),
- loss=tf.keras.losses.SparseCategoricalCrossentropy(),
- metrics=['accuracy'])
-
- # 训练模型
- model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(x_test, y_test))
-
- # 预测数据
- predictions = model.predict(x_test)

在上述代码中,你需要根据你的具体数据集,自定义加载数据集的部分(tf.keras.datasets.your_dataset.load_data()
)。其余代码构建了一个具有自注意力机制的卷积神经网络模型,并使用 Adam 优化器进行训练和预测。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。