当前位置:   article > 正文

【03-掌握Scikit-learn:深入机器学习的实用技术】

【03-掌握Scikit-learn:深入机器学习的实用技术】


前言

  经过了对Python和Scikit-learn的基础安装及简单应用,我们现在将更深入地探究Scikit-learn的实用技术,以进一步提升我们的数据科学技能。在本文中,我们将涵盖数据预处理、特征选择、模型训练、参数调整和模型评估等关键概念。
在这里插入图片描述

数据预处理

  在机器学习中,数据质量直接影响模型的性能。Scikit-learn提供了许多用于数据预处理的方便工具,我们将重点介绍几个常用的方法。

缺失值处理

使用SimpleImputer类可以轻松处理缺失值:

from sklearn.impute import SimpleImputer
import numpy as np

# 假设我们有一些带有缺失值的数据
sample_data = [[1, 2, np.nan], [</
  • 1
  • 2
  • 3
  • 4
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小蓝xlanll/article/detail/485212
推荐阅读
相关标签
  

闽ICP备14008679号