赞
踩
DNNDK包括Host和终端两部分,Host端负责将模型量化并编译成DPU能够识别的数据格式,终端即在板子上运行DPU依赖的一系列运行库。DNNDK首先将神经网络量化到8bit,量化过程中需要对一些样本进行采样并确定量化的参数。这个过程可以使用GPU进行加速,这就依赖英伟达特定版本的运行库。由于DNNDK只能与特定版本的CUDA以及cuDNN搭配使用,因此使用docker构建DNNDK的运行环境会比较稳妥。
sudo docker pull nvidia/cuda:10.0-devel-ubuntu18.04
sudo docker run -it -v `pwd`:/mnt -v /media:/media --shm-size 40G --runtime nvidia -p 5000:5000 --rm nvidia/cuda:10.0-devel-ubuntu18.04
cp /mnt/Install/sources.list.geekpie-18.04 /etc/apt/sources.list
rm /etc/apt/sources.list.d/*
apt update
dpkg -i libcudnn7_7.4.1.5-1+cuda10.0_amd64.deb
dpkg -i libcudnn7-dev_7.4.1.5-1+cuda10.0_amd64.deb
cp /usr/include/cudnn.h /usr/local/cuda/include
apt install python3 python3-pip python-qt4 libgoogle-glog-dev graphviz sudo git vim wget -y
mkdir ~/.pip && cd ~/.pip
vim pip.conf
將以下內容輸入並保存
[global]
index-url = https://mirrors.geekpie.club/pypi/web/simple
format = columns
pip3 install --upgrade pip==9.0.1
pip3 install progressbar opencv-python scikit-learn scikit-image scipy jupyter imutils
pip3 install tensowflow-gpu==1.12.0 keras==2.2.4
apt install --no-install-recommends git graphviz python-dev python-flask python-flaskext.wtf python-gevent python-h5py python-numpy python-pil python-pip python-scipy python-tk libatlas-base-dev build-essential cmake git gfortran libboost-filesystem-dev libboost-python-dev libboost-system-dev libboost-thread-dev libgflags-dev libgoogle-glog-dev libhdf5-serial-dev libleveldb-dev liblmdb-dev libopencv-dev libsnappy-dev python-all-dev python-dev python-h5py python-matplotlib python-numpy python-opencv python-pil python-pip python-pydot python-scipy python-skimage python-sklearn libboost-all-dev libgoogle-glog-dev libprotobuf-dev protobuf-compiler libturbojpeg tree -y
apt install libboost-regex1.65.1 libboost-python1.65.1 libboost-filesystem-dev libboost-python-dev libboost-system-dev libboost-thread-dev libopenblas-dev -y
如果找不到tensorflow-gpu可以到https://pypi.org/project/tensorflow-gpu/下载相应的whl文件安装。
sysver=18.04
然後安裝,安裝成功結果應該如下
root@77267f81c729:/p300/DNNDK/host_x86# ./install.sh ZedBoard
ls: cannot access 'pkgs/ubuntu16.04/dnnc-*': No such file or directory
Inspect system environment ...
[system version]
18.04
[CUDA version]
10.0
[CUDNN version]
7.4.1
Begin to install Xilinx DNNDK tools on host ...
Complete dnnc installation successfully.
Complete CPU version of decent for caffe installation successfully.
Complete GPU version of decent installation successfully.
pip3 install jupyterlab
jupyter lab --generate-config
ipython
from notebook.auth import passwd
passwd()
输入密码并记录输出,修改~/.jupyter/jupyter_notebook_config.py
c.NotebookApp.ip='*'
c.NotebookApp.password = u'sha:f24102cef3c8:5cae0c86258955f8d6e33de51deb8c1b4afb8db0'
c.NotebookApp.open_browser = False
c.NotebookApp.port = 5000
c.NotebookApp.allow_root = True
然后启动jupyter lab就可以进行开发啦
jupyter lab
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。