当前位置:   article > 正文

《向量数据库指南》——揭秘「 B 站最火的 RAG 应用」——Milvus Cloud是如何炼成的_rag应用 bzhan

rag应用 bzhan


 

04.

大模型的选择


 

在我们提供了尽可能高质量的史料信息后,就到了大模型最后的阅读理解阶段,我们一开始采用的是 gpt-35-turbo-1106,发现在这个问题上表现并不是很理想(可能是由于语料都是比较碎片化的段落),非常出现容易幻觉。在经过了一定的prompt工程后(例如:告诉它需要忠实地参考原文),但最终还是无法达到期待的效果。刚好 OpenAI 年底发布了更便宜的 gpt4 版本 gpt4-turbo-1205, 无论是对于格式的要求,以及对于幻觉的克服,都有了显著的提升,我们选择了gpt4-turbo 作为最后的 reader。


05.

为段落加上引用


 

作为一个史料的 RAG 应用,我们希望能够在给出包含知识的原文同时能够给出它在原文中的具体传记名,由于语料中可以通过格式区分出来传记名和正文,所以通过简单的一些规则就可以提取出来每个段落对应的传记名,并且通过将其作为文本的 metadata。我们可以对 metadata 进行控制,只希

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小蓝xlanll/article/detail/499319
推荐阅读
相关标签
  

闽ICP备14008679号