当前位置:   article > 正文

机器学习(XgBoost)预测顶和底

机器学习(XgBoost)预测顶和底

之前的文章中,我们对中证1000指数进行了顶和底的标注。这一篇我们将利用这份标注数据,实现机器学习预测顶和底,并探讨一些机器学习的原理。

我们选取的特征非常简单–上影线和WR(William’s R)的一个变种。选取这两个因子,是基于东吴证券高子剑在2020年6月的一份研报:上下影线,蜡烛好还是威廉好?

他们的结论是,根据这两类指标的变种得到的综合因子,在2009到2020年4月,以全A为样本,进行5组分层多空测试,得到年化收益为15.86%,最大回撤仅为3.68%,可以说具有非常明显的信号意义。

在这里插入图片描述

在上一篇文章中,我们提到机器学习总是把要解决的问题归类为两类,一类是回归,一类是分类。如果要预测的target取值处在连续实数域上,这往往是个回归问题;如果target的值域为有限个离散状态,则是一个分类问题。

然而,具体问题总是复杂许多。初学者会觉得,既然股价的取值是在连续实数域上,因此可以把它看成回归问题,使用类似LSTM之类的神经网络来预测股价。但实际上由于金融数据的噪声问题,这么做并没有什么道理。

很可能只有在构建资产定价模型时,才可以当成回归来处理,也就是,根据公司的基本面和宏观经济指标来确定公司的市值,进而推算出股价。这本质上跟预测落杉叽的房价是同样的问题。

如果我们要构建时序方向上的预测信号呢?很可能只能用我这里的方法,不去预测每一个bar的涨跌和价格,而是改为预测顶和底,最终实现买在底部,卖出在顶部。

安装XgBoost

我们一般通过conda来安装它的Python包,但pip(需要版本在21.3以上)也是可以的。

conda install -c conda-forge py-xgboost
  • 1

在Windows上安装时,还需要额外安装VC的分发包。

如果你的机器安装有支持cuda的GPU,那么conda会自动安装带GPU支持的xgboost。

不过,GPU对xgboost的加速并没有对CNN这样的神经网络那么明显。也就是说,即使有GPU,xgboost也只会在某些阶段利用到GPU加速,总体上可能会快几倍而已。考虑到我们的标注数据本身比较小,这个加速并不重要。

数据构造

经过顶底数据标注之后,我们已经获得了一份如下格式的数据:

这份数据包括了标签(即flag一列),但没有我们要的特征工程数据。因此,我们要先从OHLC数据中提取出特征。

我们决定先从最简单的特征提取–上影线和WR(William’s R)的一个变种。选取这两个因子,是基于东吴证券高子剑在2020年6月的一份研报:上下影线,蜡烛好还是威廉好?

他们的结论是,根据这两类指标的变种tr得到的综合因子,在2009到2020年4月,以全A为样本,进行5组分层多空测试,得到年化收益为15.86%,最大回撤仅为3.68%,可以说具有非常明显的信号意义。

66%

基于这个基础,我们改用机器学习的方法来做一遍。我们用来提取上下影线和WR的方法如下:

def wr_up(bars):
    h, c, l = bars["high"], bars["low"], bars["close"]
    shadow = h - c

    # 技巧:避免产生除零错误,且不影响结果正确
    return shadow/(h - l + 1e-7)

def wr_down(bars):
    h, c, l = bars["high"], bars["low"], bars["close"]
    shadow = c - l
    return shadow/(h - l + 1e-7)

def upper_shadow(bars):
    h, c, l = bars["high"], bars["low"], bars["close"]
    o = bars["open"]
    shadow = h - np.maximum(o, c)
    return shadow/(h - l + 1e-7)

def lower_shadow(bars):
    h, c, l = bars["high"], bars["low"], bars["close"]
    o = bars["open"]
    shadow = np.minimum(o, c) - l
    return shadow/(h - l + 1e-7)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

xgboost是基于树模型的,对数据的正则化本来没有要求,不过,为了便于分析和对比,我们对这四个指标都进行了归一化处理,使得数据的取值都在[0,1]之间。

如果是上下影线,值为0.5时,表明影线占了当天振幅的一半高度。如果为1,则当天收T线或者倒T(也称为墓碑线)。

William’s R 是美国作家(不要脸一下,就是博主这一类型)、股市投资家拉里.威廉在1973年出版的《我如何赚得一百万》中首先发表的一个振荡类指标,它的公式是:

W % R = H n − C n H n − L n x 100 % W\%R = \frac{H_n - C_n}{H_n - L_n} x 100\% W%R=HnLnHnCnx100%

计算向下支撑的公式略。

n是区间长度,一般设置为14天。这样 H n H_n Hn即为14天以来的最高价。其它变量依次类推。如果我们把n设置为1天,就回归成类似于上下影线的一个指标。

与K线上下影计算方法不同之处是,它只使用收盘价,而不是像上下影线那样,使用收盘价与开盘价的最大者(计算上影线时)或者最小者(计算下影线时)。

这里还有一些技巧,比如我们使用了numpy的ufunc之一, maximum来挑选开盘价和收盘价中的最大者。另一个显而易见的方法是:

np.select([c>o, o<c], [c, o])
  • 1

但此处使用ufunc会得到加速。

接下来,我们就可以构建训练数据集了:

data = {
    "label": raw["flag"].values,
    "data": np.vstack(
        (wr_up(bars), 
         wr_down(bars), 
         upper_shadow(bars), 
         lower_shadow(bars)
        )
        ).T
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

bars是numpy structured array, 包含了OHLC数据和flag,由之前的raw变量转换过来。

最终我们生成了一个字典,训练数据存放在"data"下,标签数据存放在"label"下。使用了np.vstack来将特征合并起来。这些函数在《量化交易中的Numpy与Pandas》课程中有讲解。

接下来,我们引入sklearn的中的方法,将上述数据集切分为训练集和测试集,然后进行训练:

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = 
                train_test_split(..., test_size=.2)
  • 1
  • 2
  • 3
  • 4

我们保留了20%的数据作为测试数据。

bst = XGBClassifier(n_estimators=3, max_depth=2, learning_rate=0.5)
# fit model
bst.fit(X_train, y_train)
# make predictions
preds = bst.predict(X_test)
  • 1
  • 2
  • 3
  • 4
  • 5

现在,训练完成,并且我们在测试数据集上进行了预测。接下来,我们希望知道这个模型的有效性。为此我们要引入sklearn.metrics中的一些度量方法:

from sklearn.metrics import *

acc = accuracy_score(y_test,preds)
print(f"ACC: {acc:.3f}")

recall = recall_score(y_test,preds, average='weighted')
print(f"Recall:{recall:.1%}")

f1 = f1_score(y_test,preds, average='weighted')
print(f"F1-score: {f1:.1%}")

pre = precision_score(y_test,preds, average='weighted')
print(f"Precesion:{pre:.1%}")
mx = confusion_matrix(y_test,preds)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

我们得到的结果看上去很完美:

ACC: 0.930
Recall:93.0%
F1-score: 89.6%
Precesion:86.5%
  • 1
  • 2
  • 3
  • 4

但是,这些数据能表明模型真的有效吗?幸福会不会来得太容易?所以,我们还得往下深挖一层,看看实际的预测效果究竟如何。在分析大量样本预测结果时,我们有一个利器,称为困惑矩阵(confusion matrix)。

在这里插入图片描述
我们要将矩阵mx可视化。人类,无论男人还是女人,都是视觉动物。我们无可救药地偏好各种色图。

sns.heatmap(mx/np.sum(mx), cmap="YlGnBu", 
            annot=True, fmt=".1%")
  • 1
  • 2

我们会得到这样一张图:

50%

这张图表明:大约有3.8%的0类数据,被错误分类为标签1;大约有3.2%的2类数据,被错误地分类为标签1;所有的1类数据,都正确地分类为1。

从这张图我们还可以知道,这是一个严重有偏的数据集。但我们最为关注的第0类(对应于flag = -1)和第2类(对应于flag = 1),它没能正确识别。当然,它也没错到把第0类识别为第2类,或者相反。

不过,无论如何,我们有了一个好的开端。随着我们往训练数据里加入更多的数据行、更多的特征,并且使得数据按类别均匀分布后,这个模型一定会有提升。

不过,在改进之前,我们还需要掌握更多关于xgboost及评估指标的理论知识。下期见!

转载自从因子分析到机器学习策略

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小蓝xlanll/article/detail/523779
推荐阅读
相关标签
  

闽ICP备14008679号