赞
踩
作为Key-Value
形态的内存数据库,Redis 最先会被想到的应用场景便是作为数据缓存。而使用 Redis 缓存数据非常简单,只需要通过string
类型将序列化后的对象存起来即可,不过也有一些需要注意的地方:
必须保证不同对象的 key 不会重复,并且使 key 尽量短,一般使用类名(表名)加主键拼接而成。
选择一个优秀的序列化方式也很重要,目的是提高序列化的效率和减少内存占用。
缓存内容与数据库的一致性,这里一般有两种做法:
String 类型,因为 Redis 是分布式的独立服务,可以在多个应用之间共享
例如:分布式Session
<dependency>
<groupId>org.springframework.session</groupId>
<artifactId>spring-session-data-redis</artifactId>
</dependency>
如今都是分布式的环境下java自带的单体锁已经不适用的。在 Redis 2.6.12 版本开始,string
的set
命令增加了一些参数:
EX
:设置键的过期时间(单位为秒)
PX
:设置键的过期时间(单位为毫秒)
NX
:只在键不存在时,才对键进行设置操作。 SET key value NX
效果等同于 SETNX key value
。
XX
:只在键已经存在时,才对键进行设置操作。
由于这个操作是原子性的,可以简单地以此实现一个分布式的锁,例如:
set lock_key locked NX EX 1
如果这个操作返回false
,说明 key 的添加不成功,也就是当前有人在占用这把锁。而如果返回true
,则说明得了锁,便可以继续进行操作,并且在操作后通过del
命令释放掉锁。并且即使程序因为某些原因并没有释放锁,由于设置了过期时间,该锁也会在 1 秒后自动释放,不会影响到其他程序的运行。
推荐使用 redisson 第三方库实现分布式锁。
参考 java分布式锁终极解决方案之 redisson
int类型,incrby,利用原子性
incrby userid 1000
分库分表的场景,一次性拿一段
int类型,incr方法
例如:文章的阅读量、微博点赞数、允许一定的延迟,先写入Redis再定时同步到数据库
计数功能应该是最适合 Redis 的使用场景之一了,因为它高频率读写的特征可以完全发挥 Redis 作为内存数据库的高效。在 Redis 的数据结构中,string
、hash
和sorted set
都提供了incr
方法用于原子性的自增操作,下面举例说明一下它们各自的使用场景:
string
作为计数器,设定一个名为REGISTERED_COUNT_TODAY
的 key,并在初始化时给它设置一个到凌晨 0 点的过期时间,每当用户注册成功后便使用incr
命令使该 key 增长 1,同时当每天凌晨 0 点后,这个计数器都会因为 key 过期使值清零。hash
进行计数会更好,将该计数器的 key 设为weibo:weibo_id
,hash
的 field 为like_number
、comment_number
、forward_number
和view_number
,在对应操作后通过hincrby
使hash 中
的 field 自增。sorted set
吧,将集合的 key 设为POST_RANK
。当用户发帖后,使用zincrby
将该用户 id 的 score 增长 1。sorted set
会重新进行排序,用户所在排行榜的位置也就会得到实时的更新。int类型,incr方法
以访问者的ip和其他信息作为key,访问一次增加一次计数,超过次数则返回false
String类型的bitcount(1.6.6的bitmap数据结构介绍)
字符是以8位二进制存储的
set k1 a
setbit k1 6 1
setbit k1 7 0
get k1
/* 6 7 代表的a的二进制位的修改
a 对应的ASCII码是97,转换为二进制数据是01100001
b 对应的ASCII码是98,转换为二进制数据是01100010
因为bit非常节省空间(1 MB=8388608 bit),可以用来做大数据量的统计。
*/
参考 使用Redis的bitmaps统计用户留存率、活跃用户
用户日活月活怎么统计 - Redis HyperLogLog 详解
list
作为双向链表,不光可以作为队列使用。如果将它用作栈便可以成为一个公用的时间轴。当用户发完微博后,都通过lpush
将它存放在一个 key 为LATEST_WEIBO
的list
中,之后便可以通过lrange
取出当前最新的微博。
Redis 中list
的数据结构实现是双向链表,所以可以非常便捷的应用于消息队列(生产者 / 消费者模型)。消息的生产者只需要通过lpush
将消息放入 list,消费者便可以通过rpop
取出该消息,并且可以保证消息的有序性。如果需要实现带有优先级的消息队列也可以选择sorted set
。而pub/sub
功能也可以用作发布者 / 订阅者模型的消息。无论使用何种方式,由于 Redis 拥有持久化功能,也不需要担心由于服务器故障导致消息丢失的情况。
List提供了两个阻塞的弹出操作:blpop/brpop,可以设置超时时间
上面的操作。其实就是java的阻塞队列。学习的东西越多。学习成本越低
利用set结构的无序性,通过 Spop( Redis Spop 命令用于移除集合中的指定 key 的一个或多个随机元素,移除后会返回移除的元素。 ) 随机获得值
redis> SADD myset "one" (integer) 1 redis> SADD myset "two" (integer) 1 redis> SADD myset "three" (integer) 1 redis> SPOP myset "one" redis> SMEMBERS myset 1) "three" 2) "two" redis> SADD myset "four" (integer) 1 redis> SADD myset "five" (integer) 1 redis> SPOP myset 3 1) "five" 2) "four" 3) "two" redis> SMEMBERS myset 1) "three" redis>
假如上面的微博ID是t1001,用户ID是u3001
用 like:t1001 来维护 t1001 这条微博的所有点赞用户
是不是比数据库简单多了。
老规矩,用 tags:i5001 来维护商品所有的标签。
这个场景最开始是是一篇介绍微博 Redis 应用的 PPT 中看到的,其中提到微博的 Redis 主要是用在在计数和好友关系两方面上,当时对好友关系方面的用法不太了解,后来看到《Redis 设计与实现》中介绍到作者最开始去使用 Redis 便是希望能通过set
解决传统数据库无法快速计算集合中交集这个功能。后来联想到微博当前的业务场景,确实能够以这种方式实现,所以姑且猜测一下:
对于一个用户 A,将它的关注和粉丝的用户 id 都存放在两个 set 中:
A:follow
:存放 A 所有关注的用户 id
A:follower
:存放 A 所有粉丝的用户 id
那么通过sinter
命令便可以根据A:follow
和A:follower
的交集得到与 A 互相关注的用户。当 A 进入另一个用户 B 的主页后,A:follow
和B:follow
的交集便是 A 和 B 的共同专注,A:follow
和B:follower
的交集便是 A 关注的人也关注了 B。
follow 关注 fans 粉丝
相互关注:
我关注的人也关注了他(取交集):
可能认识的人:
使用sorted set
(有序set)和一个计算热度的算法便可以轻松打造一个热度排行榜,zrevrangebyscore
可以得到以分数倒序排列的序列,zrank
可以得到一个成员在该排行榜的位置(是分数正序排列时的位置,如果要获取倒序排列时的位置需要用zcard
-zrank
)。
id 为6001 的新闻点击数加1:
zincrby hotNews:20190926 1 n6001
获取今天点击最多的15条:
zrevrange hotNews:20190926 0 15 withscores
倒排索引是构造搜索功能的最常见方式,在 Redis 中也可以通过set
进行建立倒排索引,这里以简单的拼音 + 前缀搜索城市功能举例:
假设一个城市北京
,通过拼音词库将北京
转为beijing
,再通过前缀分词将这两个词分为若干个前缀索引,有:北
、北京
、b
、be
…beijin
和beijing
。将这些索引分别作为set
的 key(例如:index:北
)并存储北京
的 id,倒排索引便建立好了。接下来只需要在搜索时通过关键词取出对应的set
并得到其中的 id 即可。
比如说,我们的一个Web应用想要列出用户贴出的最新20条评论。在最新的评论边上我们有一个“显示全部”的链接,点击后就可以获得更多的评论。
每次新评论发表时,我们会将它的ID添加到一个Redis列表。可以限定列表的长度为5000
LPUSH latest.comments
在Redis中我们的最新ID使用了常驻缓存,这是一直更新的。但是我们做了限制不能超过5000个ID,因此我们的获取ID函数会一直询问Redis。只有在超出了这个范围的时候,才需要去访问数据库。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。